{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Description of Functionality" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Algorithm\n", "\n", "## Load settings from JSON file\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from sys import argv\n", "rootdir = argv[1]\n", "\n", "#############################\n", "# FOR NOTEBOOK USE #\n", "# SET DIRECTORY HERE #\n", "# #\n", "#rootdir = \"\"\n", "# #\n", "#############################\n", "\n", "print(\"Using root directory: {}\".format(rootdir))\n", "\n", "# Get the subdirs with the different tests\n", "subdirs = sorted([ name for name in os.listdir('{}'.format(rootdir)) if os.path.isdir(os.path.join('{}'.format(rootdir), name)) ])\n", "print(\"Available subdirs: {}\".format(subdirs))\n", "\n", "# Get subsubdirs with the several size shifts\n", "subsubdirs = []\n", "for subdir in subdirs:\n", " subsubdirs.append(sorted([ name for name in os.listdir('{}/{}'.format(rootdir, subdir)) if os.path.isdir(os.path.join('{}/{}'.format(rootdir, subdir), name)) ]))\n", "\n", "print(\"Loaded all subsubdirs!\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "from sys import exit\n", "\n", "try:\n", " with open(\"{}/settings.json\".format(rootdir)) as json_file:\n", " settings = json.load(json_file)\n", "except:\n", " print(\"Please define a correct JSON file!\")\n", " exit()\n", "\n", "print(\"Succesfully loaded JSON file\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import\n", "First, import the numpy library, initialize the arrays, and finally load the csv files. \n", "\n", "Because of the way the C script dumps the variables, the last character of the csv-file will be a comma and thus the last value of the `*_times` arrays will be `NaN`. Hence, the last value has to be eliminated." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "# Initialize arrays\n", "enq_send = []\n", "recv = []\n", "\n", "number_of_datapoints = 0\n", "\n", "# Load all data and remove the last comma.\n", "# This for loop distinguish between tests which measure the enqueue time and tests which\n", "# measure the actual send time.\n", "for i, subdir in enumerate(subdirs):\n", " enq_send.append([None] * len(subsubdirs[i]))\n", " recv.append([None] * len(subsubdirs[i]))\n", " for j, subsubdir in enumerate(subsubdirs[i]):\n", " enq_send[i][j] = np.genfromtxt('{}/{}/{}/enq_send_times.csv'.format(rootdir, subdir, subsubdir), delimiter=',')\n", " recv[i][j] = np.genfromtxt('{}/{}/{}/recv_times.csv'.format(rootdir, subdir, subsubdir), delimiter=',')\n", " \n", " # Remove last comma\n", " enq_send[i][j] = np.delete(enq_send[i][j], -1)\n", " recv[i][j] = np.delete(recv[i][j], -1)\n", "\n", " #Print number of datapoints\n", " print('Loaded {} + {} datapoints from {}/{}.'.format(np.size(enq_send[i][j]), np.size(recv[i][j]), subdir, subsubdir))\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Process data\n", "Now, the data is processed. First, a check for overflows have to be performed. The timestamps are determined with the function `clock_gettime(clockid_t clk_id, const struct timespec *tp)`. Both the `struct tp`, as well as the function are showed below\n", "\n", "```\n", "struct timespec {\n", " time_t tv_sec; /* seconds */\n", " long tv_nsec; /* nanoseconds */\n", "} tp;\n", "\n", "clock_gettime(CLOCK_MONOTONIC, &tp);\n", "```\n", "\n", "The application only sends the `long tv_nsec` value, which goes from 999999999ns to 0ns. Since transmissions cannot take longer than 1 second, this overflow is resolved by adding 1000000000ns to the receive timestamps and the send confirmation timestamps, if they are smaller than the enqueue- or send timestamps.\n", "\n", "Subsequentely, the deltas between the enqueue- or send time and the receive time, and the delta between the enqueue- or send time and the send confirmation time are calculated." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Initialize arrays\n", "enq_send_recv_d = []\n", "medians = []\n", "upper_limit = []\n", "lower_limit = []\n", "\n", "# Resolve overflow issues and then calculate deltas\n", "for i in range(0, len(subdirs)):\n", " medians.append([])\n", " upper_limit.append([])\n", " lower_limit.append([])\n", " for j in range(0, len(subsubdirs[i])):\n", " recv[i][j][recv[i][j] < enq_send[i][j]] += 1000000000\n", "\n", " medians[i].append(np.median(recv[i][j] - enq_send[i][j]))\n", " \n", " # np.sort(recv[i][j] - enq_send[i][j])[int(np.size(recv[i][j]]) / 2)] would be the approximately the median\n", " # Calculate upper 10% and lower 10%\n", " upper_limit[i].append(abs(medians[i][j] - np.sort(recv[i][j] - enq_send[i][j])[int(9 * np.size(recv[i][j]) / 10)]))\n", " lower_limit[i].append(abs(medians[i][j] - np.sort(recv[i][j] - enq_send[i][j])[int(1 * np.size(recv[i][j]) / 10)]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting\n", "\n", "The data will now be plotted." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define \"find nearest\" function\n", "def find_nearest(array, value):\n", " array = np.asarray(array)\n", " idx = (np.abs(array - value)).argmin()\n", " return array[idx], idx" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from matplotlib.font_manager import FontProperties\n", "import os\n", "\n", "#First, delete all old plots and recreate the directory\n", "os.system('rm -rf ./plots')\n", "os.system('mkdir ./plots')\n", "\n", "plots_saved = 0\n", "\n", "#Start adding data\n", "for i in range(0, len(subdirs)):\n", " y_data = np.array([])\n", " x_data = np.array([])\n", "\n", " for j in range(0, len(subsubdirs[i])):\n", " x_data = np.append(x_data, j)\n", " y_data = np.append(y_data, medians[i][j])\n", " \n", " if i in settings['iter_to_start_new_plot']:\n", " width = 1.125 * settings['dimensions']['figure'][0] if i == 0 else settings['dimensions']['figure'][0]\n", " fig = plt.figure(num=None, figsize=(width, settings['dimensions']['figure'][1]), dpi=500, facecolor='w', edgecolor='k')\n", " \n", " # Add plot and set title\n", " ax = fig.add_subplot(111)\n", "\n", " ax.errorbar(x_data, medians[i], yerr = [lower_limit[i], upper_limit[i]],\n", " capsize = 3.7, elinewidth = 1, markeredgewidth = 1, zorder = 2+i,\n", " color = settings['colors'][(i + settings['skip_label'][i]) % len(settings['colors'])],\n", " marker = settings['markers'][(i + settings['skip_label'][i]) % len(settings['markers'])],\n", " label = settings['labels'][(i + settings['skip_label'][i]) % len(settings['labels'])])\n", "\n", " if i in settings['iter_to_end_plot']:\n", " # Set grid\n", " ax.set_axisbelow(True)\n", " ax.grid(True, linestyle='--')\n", "\n", " # Generate plot\n", " \n", " #Labels\n", " font_text = FontProperties()\n", " font_text.set_size(9.5)\n", " font_text.set_family('monospace')\n", "\n", " # Set axis\n", " plt.xlim([0, settings['limits'][0]])\n", " plt.ylim([0, settings['limits'][1]])\n", "\n", " # Set ticks\n", " ticks_unmodified = ticks = np.arange(0, settings['limits'][0] + 1, 1.0)\n", "\n", " # Explicitly set labels\n", " labels = []\n", " for k in range(0,13):\n", " value = 8 * 2 ** k\n", " labels.append(str(value))\n", "\n", " # Set xticks\n", " plt.xticks(ticks, labels, fontsize=10.5, family='monospace', rotation=30, horizontalalignment='right', rotation_mode=\"anchor\")\n", " \n", " if i == settings['iter_to_end_plot'][0]:\n", " ax.set_ylabel('$\\\\tilde{t}_{lat}$ [ns]', fontsize=11, family='monospace', labelpad=6)\n", " else:\n", " ax.get_yaxis().set_ticklabels([])\n", "\n", " # Set yticks\n", " plt.yticks(fontsize=10, family='monospace')\n", "\n", " ax.set_xlabel('message size [B]', fontsize=10.5, family='monospace', labelpad=4)\n", "\n", " ax.yaxis.grid(True, linestyle='-', which='major', color='black', alpha=0.8)\n", " ax.yaxis.grid(True, linestyle='--', which='minor', color='lightgrey', alpha=0.3)\n", "\n", " plt.minorticks_on()\n", " plt.tight_layout()\n", "\n", " # Save plot\n", " fig.savefig('{}/plot_{}.pdf'.format(rootdir, plots_saved), dpi=600, format='pdf')\n", " plots_saved += 1\n", "\n", " if i == settings['iter_to_end_plot'][0]:\n", " # Create and save legend\n", " import pylab\n", "\n", " # create a second figure for the legend\n", " figLegend = pylab.figure(figsize = settings['dimensions']['legend'])\n", "\n", " # produce a legend for the objects in the other figure\n", " pylab.figlegend(*ax.get_legend_handles_labels(), loc = 'upper left',\n", " prop={'family':'monospace', 'size':'8'}, ncol=2)\n", " figLegend.savefig(\"{}/legend.pdf\".format(rootdir), format='pdf')\n", " " ] }, { "cell_type": "raw", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }