1
0
mirror of https://github.com/Silicon1602/srdl2sv.git synced 2025-01-09 04:38:39 +00:00
srdl2sv/examples/interrupt_hierarchy/interrupt_hierarchy.rdl

378 lines
14 KiB
Plaintext
Raw Permalink Normal View History

//------------------------------------------------------------
// Block Level Interrupt Register
//------------------------------------------------------------
reg block_int_r {
name = "Example Block Interrupt Register";
desc = "This is an example of an IP Block with 3 int events. 2 of these
are non-fatal and the third event multi_bit_ecc_error is fatal";
default hw=w; // HW can Set int only
default sw=rw; // SW can clear
default woclr; // Clear is via writing a 1
field {
desc = "A Packet with a CRC Error has been received";
level intr;
} crc_error = 0x0;
field {
desc = "A Packet with an invalid length has been received";
level intr;
} len_error = 0x0;
field {
desc="An uncorrectable multi-bit ECC error has been received";
level intr;
} multi_bit_ecc_error = 0 ;
field {
desc="Master who was active when ECC Error Occurred";
sticky;
} active_ecc_master[7:4] = 0; // Example of multi-bit sticky field
// This field is not an intr
}; // End of Reg: block_int_r
reg block_int_en_r {
name = "Example Block Interrupt Enable Register";
desc = "This is an example of an IP Block with 3 int events";
default hw=na; // HW can't access the enables
default sw=rw; // SW can control them
field {
desc = "Enable: A Packet with a CRC Error has been received";
} crc_error = 0x1;
field {
desc = "Enable: A Packet with an invalid length has been received";
} len_error = 0x1;
field {
desc = "Enable: A multi-bit error has been detected";
} multi_bit_ecc_error = 0x0;
}; // End of Reg: block_int_en_r
reg block_halt_en_r {
name = "Example Block Halt Enable Register";
desc = "This is an example of an IP Block with 3 int events";
default hw=na; // HW can't access the enables
default sw=rw; // SW can control them
field {
desc = "Enable: A Packet with a CRC Error has been received";
} crc_error = 0x0; // not a fatal error do not halt
field {
desc = "Enable: A Packet with an invalid length has been received";
} len_error = 0x0; // not a fatal error do not halt
field {
desc = "Enable: A Packet with an invalid length has been received";
} multi_bit_ecc_error = 0x1; // fatal error that will
// cause device to halt
}; // End of Reg: block_halt_en_r
//------------------------------------------------------------
// Master Interrupt Status Register
//------------------------------------------------------------
reg master_int_r {
name = "Master Interrupt Status Register";
desc = "This register contains the status of the 4 lower Module interrupts.
Also an interrupt signal (myMasterInt) is generated which is the 'OR'
of the four Module interrupts. A Halt signal is also generated which
represents the bitwise or the masked/enabled halt bits";
default nonsticky intr; // Unless we want to have to clear this separately
// from the leaf intr this should be non sticky
default hw=w; // HW normally won't want to access this but it could
default sw=r; // Software can just read this. It clears the leaf intr's
// to clear this
field {
desc = "An interrupt has occurred with ModuleD.
Software must read the ModuleD Master Interrupt Register
in order to determine the source of the interrupt.";
} module_d_int[3:3] = 0x0;
field {
desc = "An interrupt has occurred with ModuleC.
Software must read the ModuleC Master Interrupt Register
in order to determine the source of the interrupt.";
} module_c_int[2:2] = 0x0;
field {
desc = "An interrupt has occurred with ModuleB.
Software must read the ModuleB Interrupt Register
in order to determine the source of the interrupt.";
} module_b_int[1:1] = 0x0;
field {
desc = "An interrupt has occurred with ModuleA.
Software must read the ModuleA Master Interrupt Register
in order to determine the source of the interrupt.";
} module_a_int[0:0] = 0x0;
};
//
// The following is the accompanying enable register. Since the combinatorial
// logic for processing the interrupt is internal to the generated verilog,
// there's no need for an external port - which is realized by assigning "na"
// to the hw attribute of the specific field. This could have been defined as
// a mask register just as easily...
//
//------------------------------------------------------------
// Interrupt Enable Register
//------------------------------------------------------------
reg master_int_en_r {
name = "Master Interrupt Enable Register";
desc = "Configurable register used in order to enable the corresponding
interrupts found in myMasterInt register.";
default hw = na;
default sw = rw;
field {
desc = "Interrupt enable for ModuleD Interrupts. 1 = enable, 0 = disable";
} module_d_int_en[3:3] = 0x0;
field {
desc = "Interrupt enable for ModuleC Interrupts. 1 = enable, 0 = disable";
} module_c_int_en[2:2] = 0x0;
field {
desc = "Interrupt enable for ModuleB Interrupts. 1 = enable, 0 = disable";
} module_b_int_en[1:1] = 0x0;
field {
desc = "Interrupt enable for ModuleA Interrupts. 1 = enable, 0 = disable";
} module_a_int_en[0:0] = 0x0;
};
//------------------------------------------------------------
// Halt Enable Register
//------------------------------------------------------------
// The halt en is another enable or mask that could be used to generate an
// alternate signal like a halt that represents a fatal error in the system or
// some other event NOTE: It does not have to mean fatal as the name implies
// its just another priority level for interrupts...
reg master_halt_en_r {
name = "Master Halt Enable Register";
desc = "Configurable register used in order to enable the corresponding
interrupts found in myMasterInt register.";
default hw = na;
default sw = rw;
field {
desc = "Halt enable for ModuleD Interrupts. 1 = enable, 0 = disable";
} module_d_halt_en[3:3] = 0x0;
field {
desc = "Halt enable for ModuleC Interrupts. 1 = enable, 0 = disable";
} module_c_halt_en[2:2] = 0x0;
field {
desc = "Halt enable for ModuleB Interrupts. 1 = enable, 0 = disable";
} module_b_halt_en[1:1] = 0x0;
field {
desc = "Halt enable for ModuelA Interrupts. 1 = enable, 0 = disable";
} module_a_halt_en[0:0] = 0x0;
};
//------------------------------------------------------------
// Global Interrupt Status Register
//------------------------------------------------------------
// This takes the block int which feeds the master int and then distills it
// down one more level so we end up with a single bit intr and single bit halt...
//------------------------------------------------------------
// Global Interrupt/Halt Enable Register
//------------------------------------------------------------
reg final_en_r {
name = "My Final Enable Register";
desc = "This enable allows all interrupts/halts to be suppressed
with a single bit";
default hw = na;
default sw = rw;
field {
desc = "Global Interrupt Enable. 1 = enable, 0 = disable";
} global_int_en = 0x0;
field {
desc = "Global Halt Enable. 1 = enable, 0 = disable";
} global_halt_en = 0x0;
};
reg final_int_r {
name = "My Final Int/Halt Register";
desc = "This distills a lower level interrupts into a final bit than can be
masked";
default sw = r; // sw does not need to clear global_int
// (global_int is of type final_int_r)
// instead it clears itself when all master_int intr
// bits get serviced
default nonsticky intr;
default hw = w; // w needed since dyn assign below implies interconnect to hw
// global_int.global_int->next = master_int->intr;
field {
desc = "Global Interrupt";
} global_int = 0x0;
field {
desc = "Global Halt";
} global_halt = 0x0;
};
addrmap interrupt_hierarchy {
signal { activelow; async; field_reset;} field_reset_n;
name = "Sample ASIC Interrupt Registers";
desc = "This register map is designed how one can use interrupt concepts
effectively in SystemRDL";
// Leaf Interrupts
// Block A Registers
block_int_r block_a_int; // Instance the Leaf Int Register
block_int_en_r block_a_int_en; // Instance the corresponding Int Enable
// Register
block_halt_en_r block_a_halt_en; // Instance the corresponding halt enable
// register
// This block connects the int bits to their corresponding
// int enables and halt enables
//
block_a_int.crc_error->enable = block_a_int_en.crc_error;
block_a_int.len_error->enable = block_a_int_en.len_error;
block_a_int.multi_bit_ecc_error->enable = block_a_int_en.multi_bit_ecc_error;
block_a_int.crc_error->haltenable = block_a_halt_en.crc_error;
block_a_int.len_error->haltenable = block_a_halt_en.len_error;
block_a_int.multi_bit_ecc_error->haltenable = block_a_halt_en.multi_bit_ecc_error;
// Block B Registers
block_int_r block_b_int @0x100;
block_int_en_r block_b_int_en;
block_halt_en_r block_b_halt_en;
block_b_int.crc_error->enable = block_b_int_en.crc_error;
block_b_int.len_error->enable = block_b_int_en.len_error;
block_b_int.multi_bit_ecc_error->enable = block_b_int_en.multi_bit_ecc_error;
block_b_int.crc_error->haltenable = block_b_halt_en.crc_error;
block_b_int.len_error->haltenable = block_b_halt_en.len_error;
block_b_int.multi_bit_ecc_error->haltenable = block_b_halt_en.multi_bit_ecc_error;
// Block C Registers
block_int_r block_c_int @0x200;
block_int_en_r block_c_int_en;
block_halt_en_r block_c_halt_en;
block_c_int.crc_error->enable = block_c_int_en.crc_error;
block_c_int.len_error->enable = block_c_int_en.len_error;
block_c_int.multi_bit_ecc_error->enable = block_c_int_en.multi_bit_ecc_error;
block_c_int.crc_error->haltenable = block_c_halt_en.crc_error;
block_c_int.len_error->haltenable = block_c_halt_en.len_error;
block_c_int.multi_bit_ecc_error->haltenable = block_c_halt_en.multi_bit_ecc_error;
// Block D Registers
block_int_r block_d_int @0x300;
block_int_en_r block_d_int_en;
block_halt_en_r block_d_halt_en;
block_d_int.crc_error->enable = block_d_int_en.crc_error;
block_d_int.len_error->enable = block_d_int_en.len_error;
block_d_int.multi_bit_ecc_error->enable = block_d_int_en.multi_bit_ecc_error;
block_d_int.crc_error->haltenable = block_d_halt_en.crc_error;
block_d_int.len_error->haltenable = block_d_halt_en.len_error;
block_d_int.multi_bit_ecc_error->haltenable = block_d_halt_en.multi_bit_ecc_error;
//
// Master Interrupts
//
master_int_r master_int @0x01000;
master_int_r master_halt;
master_int_en_r master_int_en;
master_halt_en_r master_halt_en;
// Associate the INTs with the ENs
master_int.module_d_int->enable = master_int_en.module_d_int_en;
master_int.module_c_int->enable = master_int_en.module_c_int_en;
master_int.module_b_int->enable = master_int_en.module_b_int_en;
master_int.module_a_int->enable = master_int_en.module_a_int_en;
// Associate the HALTs with the ENs
master_halt.module_d_int->haltenable = master_halt_en.module_d_halt_en;
master_halt.module_c_int->haltenable = master_halt_en.module_c_halt_en;
master_halt.module_b_int->haltenable = master_halt_en.module_b_halt_en;
master_halt.module_a_int->haltenable = master_halt_en.module_a_halt_en;
// Now hook the lower level leaf interrupts to the higher level interrupts
// This connects the Implicit Or from Block A's INT reg after
// masking/enable to the next level up (master)
master_int.module_a_int->next = block_a_int->intr;
// This connects the Implicit Or from Block B's INT reg after
// masking/enable to the next level up (master)
master_int.module_b_int->next = block_b_int->intr;
// This connects the Implicit Or from Block C's INT reg after
// masking/enable to the next level up (master)
master_int.module_c_int->next = block_c_int->intr;
// This connects the Implicit Or from Block D's INT reg after
// masking/enable to the next level up (master)
master_int.module_d_int->next = block_d_int->intr;
// This connects the Implicit Or from Block A's HALT reg after
// masking/enable to the next level up (master)
master_halt.module_a_int->next = block_a_int->halt;
// This connects the Implicit Or from Block B's HALT reg after
// masking/enable to the next level up (master)
master_halt.module_b_int->next = block_b_int->halt;
// This connects the Implicit Or from Block C's HALT reg after
// masking/enable to the next level up (master)
master_halt.module_c_int->next = block_c_int->halt;
// This connects the Implicit Or from Block D's HALT reg after
// masking/enable to the next level up (master)
master_halt.module_d_int->next = block_d_int->halt;
final_int_r global_int @0x1010;
// Inst the global int/halt register
final_en_r global_int_en @0x1014;
// Inst the global int/halt enable register
global_int.global_int->enable = global_int_en.global_int_en;
// Associate the INT with the EN
global_int.global_halt->haltenable = global_int_en.global_halt_en;
// Associate the HALT with the EN
global_int.global_int->next = master_int->intr;
// Take the or of the 4 blocks in the master
// Int and create one final interrupt
global_int.global_halt->next = master_halt->halt;
// Take the or of the 4 blocks in the master
// Int and create one final halt
};