
Implementation and Analysis of an
InfiniBand based Communication in a
Real-Time Co-Simulation Framework

Dennis Potter
Matriculation Number: 315248

Master Thesis

The present work was submitted to
RWTH Aachen University

Faculty of Electrical Engineering and Information Technology
Institute for Automation of Complex Power Systems

Univ.-Prof. Antonello Monti, Ph. D.

Supervisors: Lukas Razik
Steffen Vogel

The present’s work LATEX source code, its images, all used datasets, and all scripts that were used to
create graphs are publicly available on https://git.dennispotter.eu/Dennis/masters-thesis.
The aforementioned Git repository also provides a compiled version of the present work.

Author Dennis Potter <dennis@dennispotter.eu>

Supervisors Lukas Razik <lrazik@eonerc.rwth-aachen.de>
Steffen Vogel <svogel2@eonerc.rwth-aachen.de>

Submitted to RWTH Aachen University on November 9, 2018.

Copyright
The present work is published under the

Creative Commons Attribution 4.0 International (CC BY 4.0).

Below, a human-readable summary of (and not a substitute for) the license:

You are free to:
Share copy and redistribute the material in any medium or format;
Adapt remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:
Attribution You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

No additional restrictions You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

https://git.dennispotter.eu/Dennis/masters-thesis
mailto:dennis@:dennispotter.eu
mailto:lrazik@eonerc.rwth-aachen.de
mailto:svogel2@eonerc.rwth-aachen.de

Abstract
The present work evaluates the feasibility and added value of an InfiniBand based
communication in the co-simulation framework VILLASframework and its simula-
tion data gateway VILLASnode. InfiniBand is characterized by its high throughput
and low latencies, which makes it particularly suitable for the hard real-time re-
quirements of VILLASnode. It allows applications on different host systems to
communicate with each other, without many of the latency bottlenecks that are
present in other technologies such as Ethernet.

The present work shows that—with some optimizations—sub-microsecond laten-
cies were achievable in a benchmark that mimics the characteristics of the co-
simulation framework. After it presents how InfiniBand was integrated in the frame-
work, thereby only making minor adjustments to the existing communication API, it
shows how the newly implemented interface performs compared to the existing ones.

The results showed that, regarding latency, the InfiniBand interface performed
more than one order of magnitude better than VILLASnode’s other interfaces that
enable server-server communication. Furthermore, much higher transmission rates
could be achieved and the latency’s predictability substantially improved. Its laten-
cies, which lie between 1.7 µs and 4.9 µs, were only 1.5–2.5 µs worse than the zero-
latency reference, in which VILLASnode uses the POSIX shared memory API to
communicate. However, since the shared memory interface is only supported when
the different VILLASnode instances are located on the same computer, the Infini-
Band interface turned out to have the lowest latency of the currently implemented
server-server interfaces.

Keywords: InfiniBand, co-simulation, RDMA, real-time, VILLASframework,
VILLASnode, OFED, OpenFabrics, HPC

v

Contents
Acronyms 1

1 Introduction 7
1.1 Motivation . 7

1.1.1 New challenges in power system simulations 7
1.1.2 VILLASframework: distributed real-time co-simulations 8
1.1.3 Hard real-time communication between different hosts 9

1.2 Related work . 10
1.3 Structure of the present work . 13

2 Basics 15
2.1 The Virtual Interface Architecture . 15

2.1.1 Basic components . 16
2.1.2 Data transfer . 16
2.1.3 The virtual interface finite-state machine 18

2.2 The InfiniBand Architecture . 19
2.2.1 Basics of the InfiniBand Architecture 20
2.2.2 Queue pairs & completion queues 22
2.2.3 The InfiniBand Architecture subnet 29
2.2.4 Data packet format & addressing 32
2.2.5 Virtual lanes & service levels 37
2.2.6 Congestion control . 40
2.2.7 Memory management . 44
2.2.8 Communication management 46

2.3 OpenFabrics software libraries . 49
2.3.1 Submitting work requests to queues 49
2.3.2 Event channels . 53
2.3.3 RDMA communication manager library 56

2.4 Real-time optimizations in Linux . 57
2.4.1 Memory optimizations . 57
2.4.2 Non-uniform memory access 60
2.4.3 CPU isolation & affinity . 60
2.4.4 Interrupt affinity . 64
2.4.5 Tuned daemon . 65

3 Architecture 67
3.1 Concept . 67

vii

Contents

3.2 Configuration of nodes . 69
3.3 Interface of node-types . 69

3.3.1 Original implementation of the read- and write-function 70
3.3.2 Requirements for the read- and write-function of an Infini-

Band node . 72
3.3.3 Proposal for a new read- and write-function 75

3.4 Memory management . 77
3.5 VILLASnode finite-state machine . 77

4 Implementation 81
4.1 Host channel adapter benchmark . 81

4.1.1 Definition of measurement points 81
4.1.2 Supported tests . 85

4.2 VILLASframework InfiniBand node-type 86
4.2.1 Start-function . 87
4.2.2 Communication management thread 87
4.2.3 Read-function . 90
4.2.4 Write-function . 91
4.2.5 Overview of the InfiniBand node-type 93

4.3 VILLASnode node-type benchmark 94
4.3.1 Signal generation rate . 95
4.3.2 Further optimizations of the benchmark’s datapath 99

4.4 Enabling UC support in the RDMA CM 100
4.5 Processing data . 100

4.5.1 Processing the host channel adapter benchmark’s results . . . 101
4.5.2 Processing the VILLASnode node-type benchmark’s results . . 102

5 Evaluation 103
5.1 Custom one-way host channel adapter benchmark 104

5.1.1 Event based polling . 104
5.1.2 Busy polling . 108
5.1.3 Differences between the submit and send timestamp 111
5.1.4 Inline messages . 112
5.1.5 RDMA write compared to the send operation 113
5.1.6 Unsignaled messages compared to signaled messages 115
5.1.7 Variation of message size . 117

5.2 OFED’s round-trip host channel adapter benchmark 119
5.2.1 Correspondence between round-trip and one-way benchmark . 120
5.2.2 Variation of the MTU . 121
5.2.3 RDMA CM queue pairs compared to regular queue pairs . . . 121

5.3 VILLASnode node-type benchmark 122
5.3.1 Comparison between InfiniBand service types 125
5.3.2 Comparison to the zero-latency reference 129
5.3.3 Comparison to other node-types 131

viii

Contents

6 Conclusion 135

7 Future Work 137
7.1 Real-time optimizations . 137
7.2 Optimization & profiling . 138
7.3 RDMA over Converged Ethernet support 138

Appendices 139
A OpenFabrics Verbs . 141

A.1 IB verbs API . 141
A.2 RDMA CM API . 147

B Tuned daemon profile . 151
C VILLASnode node-type interface . 153
D VILLASnode structs . 155

D.1 struct sample . 155
D.2 struct node . 156
D.3 struct node_type . 157

E InfiniBand node configuration . 159
F Results benchmarks . 161

F.1 Influence of CQEs on latency of RDMA write 161
F.2 Influence of constant burst size on latency 162
F.3 Influence of intermediate pauses on latency 163
F.4 Comparison of timer functions 164
F.5 3D plots InfiniBand nodes (UC & UD) 165
F.6 3D plot shmem node . 166
F.7 Missed steps nanomsg and zeromq nodes 167

List of Figures 169

List of Tables 173

List of Listings 175

Bibliography 177

ix

Acronyms
ABR Adjusted Block Received. 41, 42

AETH ACK Extended Transport Header. 34

AH Address Handle. 53, 88, 91, 127, 129, 142–144

API Application Programming Interface. v, 49, 96, 97, 101, 129, 141

ARP Address Resolution Protocol. 56

ASPM Active State Power Management. 111, 131

AtomicAckETH Atomic ACK Extended Transport Header. 34

AtomicETH Atomic Extended Transport Header. 33

BECN Backward Explicit Congestion Notification. 42, 43

BTH Base Transport Header. 33, 42

CA Channel Adapter. 22, 30, 34, 38, 106

CC Completion Channel. 54, 142, 143, 146, 147

CCA Congestion Control Architecture. 42, 43, 169

CCM Congestion Control Manager. 42, 43, 169

CCT Congestion Control Table. 43, 169

CI/CD continuous integration and continuous delivery. 101

CM Communication Manager. 46, 49, 56, 81, 100, 120–122, 125, 129, 147, 148, 150,
174

CPU central processing unit. 11, 15, 52, 54, 57, 60–65, 91, 97, 103–105, 108, 109,
111, 124, 175

CQ Completion Queue. 17, 46, 54, 55, 84, 88, 93, 106, 108, 109, 112, 142, 143, 145,
146, 175

CQE Completion Queue Entry. 25, 26, 51–55, 75, 81, 84, 90, 91, 93, 106, 116,
144–146, 161, 171–175

1

Acronyms

CRC Cyclic Redundancy Check. 32, 34

CSV comma-separated values. 94

DETH Datagram Extended Transport Header. 33

DMA Direct Memory Access. 11, 26, 38, 52, 111, 112

DPWRR dual priority weighted round robin. 39

DREP response to DREQ. 47, 49

DREQ request for communication release. 47, 48

DRTS digital real-time simulation. 7

ETH Extended Transport Header. 33

EUI-48 48-bit Extended Unique Identifier. 56

EUI-64 64-bit Extended Unique Identifier. 35, 37

FC packet Flow Control Packet. 40–42, 169

FCCL Flow Control Credit Limit. 42

FCTBS Flow Control Total Blocks Sent. 41

FECN Forward Explicit Congestion Notification. 42, 43

FIFO first-in, first-out. 9, 25, 67

GID Global Identifier. 30, 35–37, 47, 56, 141, 143, 145, 169

GMP General Management Packet. 31, 32, 46

GPL GNU General Public License. 8, 49

GRH Global Routing Header. 32, 33, 35–38, 125, 127, 129, 169

GUID Global Unique Identifier. 31, 35, 48, 144, 145

HCA Host Channel Adapter. 22, 24–29, 43–46, 49–52, 56, 60, 61, 74, 75, 77, 81–86,
91, 93, 103, 104, 106, 111–113, 117, 118, 124–126, 131, 137, 144, 151, 170

I/O input/output. 7, 64, 131

IB InfiniBand. 19, 21, 141, 174

2

Acronyms

IBA InfiniBand Architecture. 20–24, 27, 32, 33, 35, 37, 38, 41, 45, 46, 48, 49, 52,
56, 73, 77, 81, 86, 135, 169, 173

IBTA InfiniBandSM Trade Association. 20, 49

ICRC Invariant CRC. 34

IETH Invalidate Extended Transport Header. 34

ImmDt Immediate Data. 34, 52, 86

IPoIB Internet Protocol over InfiniBand. 56, 131

IRQ interrupt request. 64, 65, 175

iWARP Internet Wide-area RDMA Protocol. 49

JSON JavaScript Object Notation. 101, 153

LFENCE Load Fence. 98

LID Local Identifier. 29–31, 34, 47, 141, 143

lkey local key. 44

LLFC Link-Level Flow Control. 40, 41, 169

LMC LID Mask Control. 34

LRH Local Routing Header. 33–35, 38, 169

LSB least significant bit. 35, 37, 56, 58, 98

MAD Management Datagram. 30–32, 46, 169

MMU memory management unit. 57, 58

MR Memory Region. 44, 142, 145, 146, 169

MRA message receipt acknowledgment. 47, 48

MSB most significant bit. 35, 37, 56, 98

MTU Maximum Transmission Unit. 21, 30, 31, 34, 118, 119, 121, 122, 145, 174

MW Memory Window. 44, 45, 142, 169

NIC network interface controller. 8, 15–17, 144

NTP Network Time Protocol. 82

3

Acronyms

NUMA non-uniform memory access. 12, 60–63, 103, 104, 170

OFEDTM OpenFabrics Enterprise Distribution. 23, 46, 49, 50, 52, 54, 56, 57, 82,
103, 115, 120, 137, 169, 173

OS operating system. 15, 16, 46, 57, 59, 87, 103, 108, 111, 131, 137

PCI-e Peripheral Component Interconnect Express. 9, 60, 61, 103, 111, 131, 170

PD Protection Domain. 44, 45, 141, 142, 146, 147

PHIL (power) hardware-in-the-loop. 7

PID process identifier. 62

PM QoS Power Management Quality of Service. 111

POSIX Portable Operating System Interface. v, 9, 129

QoS Quality of Service. 8, 10, 12, 38, 138

QP Queue Pair. 22, 23, 26–29, 32, 43–46, 51–53, 56, 57, 73, 74, 76, 77, 86, 88, 91,
100, 117, 119–122, 126, 141–149, 169, 170, 174

QPN Queue Pair Number. 29, 48, 56

RAM random-access memory. 103

RC Reliable Connection. 22, 23, 28, 29, 46, 48, 85, 88, 105, 106, 108, 109, 114, 117,
119–123, 126–128, 162, 163, 171, 174

RD Reliable Datagram. 22, 23, 46, 48, 52, 173

RDETH Reliable Datagram Extended Transport Header. 33

RDMA Remote Direct Memory Access. 11, 12, 18, 24, 29, 33, 34, 44–46, 49, 51–53,
56, 81, 85, 87, 100, 113–116, 120–122, 125, 129, 138, 141, 144, 147, 148, 150,
161, 171, 172, 174

RDTSC Read Time-Stamp Counter. 97, 98, 175

RDTSCP Read Time-Stamp Counter and Processor ID. 97, 98, 175

REJ reject. 47, 48

REP reply to REQ. 47, 48

REQ request for communication. 47, 48, 56

RETH RDMA Extended Transport Header. 33

4

Acronyms

rkey remote key. 44, 45

RoCE RDMA over Converged Ethernet. 12, 13, 138

RQ Receive Queue. 22, 25, 73–76, 78, 90, 91, 142, 145, 169, 170

RT real-time. 7, 137

RTU ready to use. 47, 48

SA Subnet Administration. 31, 32

sge scatter/gather element. 50

SIDR_REP Service ID Resolution Response. 47, 49

SIDR_REQ Service ID Resolution Request. 47, 49

SL Service Level. 38, 40

SM Subnet Manager. 29–31, 38, 169

SMA Subnet Management Agent. 31

SMP Subnet Management Packet. 31, 32, 42

SQ Send Queue. 22, 25, 28, 51, 74–76, 84, 85, 91, 92, 111, 115, 145, 169, 170, 173,
175

SRQ Shared Receive Queue. 141–143, 145, 146

TCA Target Channel Adapter. 22

TCP Transmission Control Protocol. 8, 22

TCP/IP Internet protocol suite. 15, 56

TLB translation lookaside buffer. 58, 59

TMR timer. 43, 169

TSC Time-Stamp Counter. 97–99, 123, 128, 132, 138, 164, 172, 176

UC Unreliable Connection. 22, 23, 46, 48, 81, 85, 88, 100, 105, 106, 108, 109, 111,
113, 114, 116, 117, 119, 121, 128, 161–163, 165, 172

UD Unreliable Datagram. 22, 23, 46–48, 53, 85, 88, 105, 106, 108, 109, 113,
117–119, 121, 122, 126–128, 141, 143, 162, 163, 165, 171–173

UDP User Datagram Protocol. 8, 9, 22

5

Acronyms

VCRC Variant CRC. 34

VI Virtual Interface. 16–19

VIA Virtual Interface Architecture. 15–22, 26, 72, 73, 77, 78, 86, 135, 169

VL Virtual Lane. 26, 31, 32, 37–42

WQE Work Queue Element. 22, 25, 26, 28, 38, 52, 73, 85, 90

WR Work Request. 22, 24, 25, 27–29, 45, 46, 51–53, 75, 77, 81, 83, 85, 86, 90–92,
111–113, 115, 117, 124, 126, 129, 145, 173

WRR weighted round robin. 39

XRC eXtended Reliable Connection. 141, 142, 144, 146

6

1 Introduction

1.1 Motivation
At present, there is an increasing shift in electric energy generation from centralized—
often environmentally harmful—power plants to distributed renewable energy sources.
In their paper on intelligence in future electric energy systems, Strasser et al. [Str+15]
describe the new challenges which arise together with this shift to sustainable electric
energy systems.

1.1.1 New challenges in power system simulations

Nowadays, digital real-time simulations (DRTS) are most frequently used to get
accurate models of the output waveforms of electric energy systems. In real-time
(RT) simulations, the equations of one time step in the simulation have to be solved
within the corresponding time span in the actual physical world. As Faruque et
al. [Far+15] describe, DRTS can be divided into two classes: full digital and (power)
hardware-in-the-loop (PHIL) real-time simulations. While the former are completely
modeled inside the simulator, the latter provide input/output (I/O) interfaces which
allow the user to replace digital models with actual physical components.

Since power grids should be reflected into power models as accurate as possi-
ble, more complex grids will naturally result in more complex simulations. Hence,
the shift towards distributed electric energy generation poses new challenges re-
garding DRTS complexity. One possible solution to counteract the arising com-
putational bottlenecks is the distribution of simulation systems into smaller sub-
systems [Far+15].

As a solution to this problem, Stevic et al. [Ste+17] propose a framework which en-
ables geographically distributed laboratories to integrate their off-the-shelf real-time
digital simulators virtually, thereby also enabling RT co-simulations. Later, Mirz
et al. [Mir+18] summarized other important benefits of such a system: hardware
and software of various laboratories can be shared; easy knowledge exchange among
research groups is facilitated and encouraged; there is no need to share confidential
data since every laboratory can decide to run its own simulations and only share
interface variables; laboratories without certain hardware can now, nonetheless, test
algorithms on this hardware.

The following subsection presents the implementation of such a system, as pre-
sented by Vogel et al. [Vog+17]: VILLASframework.

7

1 Introduction

1.1.2 VILLASframework: distributed real-time co-simulations

VILLASframework1 is an open-source set of tools to enable distributed real-time
simulations, published under the GNU General Public License (GPL) v3.0. Within
VILLASframework, VILLASnode instances form gateways for simulation data. Ta-
ble 1.1 shows the interfaces—which are called node-types in VILLASnode—which
are currently supported. Node-types can roughly be divided into three categories:
node-types that can solely communicate with node-types on the same server (inter-
nal communication), node-types that can communicate with node-types on different
servers (server-server communication), and node-types that form an interface be-
tween a simulator and a server (simulator-server communication). An instance of a
node-type is called a node.

Figure 1.1 shows VILLASframework with its main components: VILLASnode and
VILLASweb. The figure shows nodes in laboratories that form gateways between
software (e.g., a file on a host system) or hardware (e.g., a simulator). A node can
also be connected to other nodes; these can be located on the same host system,
on a different host system in the same laboratory, or on a host system in a remote
laboratory. Within VILLASframework, a distinction must be made between the soft
real-time integration layer and the hard real-time integration layer.

Although node-types that realize internal communication are able to achieve hard
real-time, none of the node-types that connect different hosts with each other are
able to do so. So far, all node-types rely on the Transmission Control Proto-
col (TCP)—e.g., amqp and mqtt—or on the User Datagram Protocol (UDP)—e.g.,
socket. Both protocols are part of the Internet protocol suite’s transport layer and
these nodes thus rely on Ethernet as networking technology.

Within Ethernet, a large portion of the latency between submitting a request to
send data and actually receiving the data is caused by software overhead, switches
between user and kernel space, and interrupts. For example, Larsen and Hugga-
halli [Lar+09] report that, on average, it takes 3 µs on their Linux system before
control is actually handed to the network interface controller (NIC) when a host
tries to send a simple ping message. For the Intel® 82571 1 GbE controller they
used, these 3 µs are 72 % of the time the message spends in the sending node. Simi-
lar proportions of software and hardware latency can be seen at the receiving host.
After optimizations, Larsen and Huggahalli reduced the latency of an Intel® 82598
10 GbE controller to just over 10 µs, in which software latency was still predominant.

Another issue of Ethernet is its variability [Lar+09]: real-time applications require
a high predictability and thus low variability of the latency of samples. Furthermore,
Quality of Service (QoS) support is limited in Ethernet [Rei+06]. Techniques to
avoid and control congestion can become essential for networks with a high load,
which can be caused, for example, by a high number of small samples due to real-
time communication.

1https://www.fein-aachen.org/projects/villas-framework/

8

https://www.fein-aachen.org/projects/villas-framework/

1.1 Motivation

Table 1.1: Interfaces supported by VILLASnode as of June 2018.2

Section Node Name Description

internal
communication

file support for file log/replay
shmem POSIX shared memory interface with external

processes
loopback internal loopback using a queued FIFO buffer
signal configurable signal generator for testing pur-

poses
stats send communication statistics to other nodes
test_rtt measurement of round-trip time, packet loss,

and sending rates

server-server
communication

socket BSD network sockets for Packet, IP, or UDP
layer

zeromq ZeroMQ publish/subscribe messaging
influxdb InfluxDB time-series database
nanomsg nanomsg publish/subscribe messaging
amqp Advanced Message Queuing Protocol
mqtt Message Queuing Telemetry Transport
ngsi OMA Next Generation Services Interface 10
websocket send and receive samples of a WebSocket con-

nection

simulator-server
communication

opal OPAL-RT asynchronous processes
fpga VILLASfpga PCI-e card
comedi interface to Comedia devices
gtwif RTDS GTWIF workstation interface
iec61850-9-2 IEC 61850-9-2 Samples Values
iec61850-8-1 IEC 61850-8-1 GOOSE Telegrams

1.1.3 Hard real-time communication between different hosts
Thus, in order to achieve hard real-time between different hosts, a different tech-
nology than Ethernet must be used. An alternative technology that is particularly
suitable for this purpose is InfiniBand. This technology is specifically designed as a
low-latency, high-throughput inter-server communication standard. Due to its de-
sign, every process assumes that it owns the network interface controller and the

2https://villas.fein-aachen.org/doc/node-types.html

9

https://villas.fein-aachen.org/doc/node-types.html

1 Introduction

V
I
L
L
A
S
w
e
b

V
I
L
L
A
S
n
o
d
e

user nuser n

web-based
access

hard real-time integration layerhard real-time integration layer

l
a
b

1

l
a
b

1

l
a
b

n

l
a
b

n

......

user 2user 2

web-based
access

user 1user 1

..
.

..
.

simulation
as a

service

simulation
as a

service

data
as a

service

data
as a

service

model
parameter
setting

model
parameter
setting

domain-specific
offline analysis

domain-specific
offline analysis

node
SW

HW
node

SW

HW
node

SW

HW

offline integration layeroffline integration layer

soft real-time integration layersoft real-time integration layer

web-based
access

Figure 1.1: VILLASweb and VILLASnode, the main components of VILLASframe-
work.

operating system does not need to multiplex it to processes. Consequently, processes
do not need to invoke system calls—and thus trigger switches between user and
kernel space—while transferring data. It is even possible to send data to a remote
host without its software noticing that data is written into its memory. Further-
more, InfiniBand has extensive support for QoS and is a lossless architecture, which
means that it—other than Ethernet—does not rely on dropping packets to handle
congestion of the network. Finally, the InfiniBand Architecture handles many, more
complex, tasks, such as reliability, directly in the hardware.

Because this technology seems so well suited for this purpose, the present work
investigates the possibilities of implementing a VILLASnode node-type that relies
upon InfiniBand as its communication technology.

1.2 Related work
The goal of the present work was to develop a communication channel among dif-
ferent host systems that is optimized regarding latency. Therefore, this section will
examine previous performance studies on InfiniBand that present optimizations re-
garding latency.

10

1.2 Related work

In their work, MacArthur and Russel evaluate how certain programming decisions
affect the performance of messages that are sent over an InfiniBand network [MR12].
They examine several features that potentially affect the performance:

1. The operation code, which determines if a message will be sent with either
channel or memory semantics.

2. The message size.
3. The completion detection, which determines whether the completion queue

gets actively polled or provides notifications to the waiting application. This
setting also heavily affects CPU utilization.

4. Sending data inline, with which the CPU directly copies data to the net-
work adapter instead of relying on the adapter’s DMA.

5. Processing data simultaneously, by sending data from multiple buffers
instead of one.

6. Using a work request submission list, with which instructions are sub-
mitted to the network adapter as a list instead of one at a time.

7. Turning completion signaling periodically on and off for certain operations.
8. The wire transmission speed.

They conclude, that an application should use the operation code that best suits
its needs. A limiting factor here is often the need to notify the receiver about new
data. When comparing the operation codes that support notifying the receive side,
i.e., send and RDMA write with immediate, the performance difference is negligible.

For “small” messages (≤ 1024 KiB), the message size did not influence the latency
too much under normal circumstances. For “large” messages (≥ 1024 KiB), however,
they observed that the latency increased with the message size.

When letting the completion queue provide notifications when new data arrived,
they measured a CPU utilization of 20 % for messages smaller than 512 B and 0 %
for messages larger than 4 MiB. When the queue was actively polled, the CPU
utilization turned out to always be 100 %. Although completion detection with
notifications was more resource friendly, they found that it, in case of small messages,
resulted in latencies that were almost 4× higher than when actively polling. For large
messages this difference diminished. The latencies of messages larger than 16 KiB
showed no difference at all anymore.

They advice to send data inline whenever this feature is supported by the network
adapter that is used and when the message size is smaller than the cache line size
of the adapter. They discovered that sending data inline required a few additional
CPU cycles, but resulted in a latency decrease of up to 25 %. They also called
attention to the fact that sending messages larger than the cache line size of the
network adapter inline had a detrimental effect on latency.

With regards to the number of buffers, they found the ideal number of buffers to
be around 8 for small messages and 3 for large messages. Using more buffers did not

11

1 Introduction

increase the performance any more, and even resulted in slightly worse performance
in some cases. By using 8 buffers and sending data inline, they detected one-way
latencies as low as 300 ns. This is considerably less than the latencies for Ethernet,
as reported by Larsen and Huggahalli [Lar+09].

Their recommendation regarding the submission of lists of instructions is to only
use it when appropriate: whenever it is possible to submit an instruction individu-
ally, this should be the preferred method. In that way, the adapter can queue the
instructions and is thus kept busy.

Last but not least, they examined the influence of completion signaling. Usually,
after a message has been (successfully) sent, the sender gets notified, for example,
to release the buffer. MacArthur and Russel first inspected periodic signaling, where
only every

(
nbuffers

2

)th
message triggered a notification. They found that this usually

had little effect on latency. It only had a larger effect when a list with multiple
instructions was submitted to the adapter. However, when messages were sent
inline, they found that it could be beneficial to disable signaling.

MacArthur and Russel also compared their InfiniBand setup with a contemporary
RDMA over Converged Ethernet (RoCE) setup. Although they concluded that
InfiniBand outperformed RoCE for large messages, they also concluded that the
difference for small messages was negligible. However, as Reinemo et al. state in
their publication [Rei+06], support for QoS is limited in Ethernet and abundantly
available in InfiniBand.

In a later work [LR14], Liu and Russel solely focused on throughput. Although
they exclusively focused on messages larger than 32 KiB, which are uncommon in
VILLASnode, they drew a few conclusions that can generally be applied to commu-
nication over InfiniBand. They observed that:

• in most cases, NUMA affinity effects the performance of the network adapter;
• the performance (with regards to throughput) is sensitive to message align-

ment;
• the maximum number of unsignaled instructions before a signaled instruction

should be sent is:

S =

min(B
s
, 1), if 16 KiB < message size < 128 KiB

min(DSQ

2 , DSQ − B), otherwise
,

(1.1)
with B the number of outstanding messages and DSQ the depth of the send
queue.

Furthermore, they preferred the RDMA write with immediate over the send op-
eration.

12

1.3 Structure of the present work

1.3 Structure of the present work
2 Basics aims to give the reader an understanding of the communication architec-
ture that lies at the heart of the VILLASnode node-type that was implemented as
part of the present work. The chapter starts with an introduction on the Virtual
Interface Architecture and proceeds with a section that is dedicated to InfiniBand.
Before finishing with a section on real-time optimizations, chapter 2 elaborates upon
the software libraries that are used to access InfiniBand hardware.

3 Architecture expands on the internals of VILLASnode. After having explained
the concept of VILLASnode, this chapter discusses the adaptions that had to be
made to its architecture to (efficiently) support an InfiniBand node-type. These
include changes to function parameters of the interface between the global VIL-
LASnode instance and an instance of a node-type, to the memory management of
VILLASnode, and to the finite-state machine of instances of node-types.

4 Implementation first discusses the non-trivial parts of the implementation of
the benchmark that was used to profile the InfiniBand hardware, the InfiniBand
node-type, and the benchmark that was used to analyze VILLASnode node-types.
Then, it discusses how an additional service type was enabled in the communica-
tion manager that was used and how the acquired data from the benchmarks was
processed.

5 Evaluation evaluates the results that were found with the help of the benchmarks
that were presented in the previous chapter.

6 Conclusion considers whether the assumptions from section 1.1 (Motivation) are
legitimate and thus whether the InfiniBand node-type is a valuable addition to the
VILLASframework.

7 Future Work presents possible optimizations that were not examined in the
present work. It begins with a brief examination of the possibilities the PREEMPT_RT
patch could bring, continues with a section on optimizations & profiling of the VIL-
LASnode source code, and ends with a section on RoCE.

In addition to this brief introduction on the structure of the present work, every
chapter begins with a paragraph that presents the structure of the sections within
that chapter.

13

2 Basics
This first section of this chapter (2.1) introduces the Virtual Interface Architecture,
of which the InfiniBand Architecture is a descendant. After this brief introduction
on InfiniBand’s origins, section 2.2 is completely devoted to the InfiniBand Archi-
tecture itself. Subsequently, section 2.3 introduces the software libraries that are
used to operate the InfiniBand hardware in the present work’s benchmarks and in
the implementation of the VILLASnode InfiniBand node-type. Finally, section 2.4
goes on to discuss real-time optimizations in Linux, which is the operating system
VILLASnode is most frequently operated on.

2.1 The Virtual Interface Architecture
InfiniBand is rooted in the Virtual Interface Architecture (VIA) [Pfi01], which was
originally introduced by Compaq, Intel, and Microsoft [97]. Although InfiniBand
does not completely adhere to the original VIA specifications, it is important to
understand its basics. In that way, some design decisions in the InfiniBand Archi-
tecture will be more comprehensible. This section will therefore elaborate on the
characteristics of the VIA.

The lion’s share of the Internet protocol suite, also known as TCP/IP, is im-
plemented by the operating system (OS) [Koz05]. Even though the concept of the
TCP/IP stack allows the interface between a NIC and an OS to be relatively sim-
ple, a drawback is that the NIC is not directly accessible for consumer processes, but
only over this stack. Since the TCP/IP stack resides in the operating system’s kernel,
communication operations result in trap machine instructions (or on more recent x86
architecture’s: sysenter instructions), which cause the central processing unit (CPU)
to switch from user to kernel mode [Ker10]. This back-and-forth between both modes
is relatively expensive and thus adds a certain amount of latency to the communi-
cation operation that caused the switch. Furthermore, since the TCP/IP stack also
includes reliability protocols and the (de)multiplexing of the NIC to processes, the
operating system has to take care of these rather expensive tasks as well [Koz05].
Section 1.1 already described Larsen and Huggahalli’s [Lar+09] research on the pro-
portions of the latency in the Internet protocol suite. This overhead resulted in the
need—and thus the development—of a new architecture which would provide each
process with a directly accessible interface to the NIC: the Virtual Interface Archi-
tecture was born.

In their publication, Dunning et al. [Dun+98] describe that the most important
characteristics of the VIA are:

15

2 Basics

• data transfers are realized through zero-copy;
• system calls are avoided whenever possible;
• the NIC is not multiplexed between processes by a driver;
• the number of instructions needed to initiate data transport is minimized;
• no interrupts are required when initiating or completing data transport;
• there is a simple set of instructions for sending and receiving data;
• it can both be mimicked in software and synthesized to hardware.

Accordingly, several tasks which are handled in software in the Internet protocol
suite—e.g., multiplexing the NIC to processes, data transfer scheduling, and prefer-
ably reliability of communication—must be handled by the NIC in the VIA.

2.1.1 Basic components
A model of the VIA is depicted in Figure 2.1. At the top of the stack are the processes
and applications that want to communicate over the network controller. Together
with OS communication protocols and a special set of instructions which are called
the VI User Agent, they form the VI Consumer. The VI consumer is colored light
gray in Figure 2.1 and resides completely in the operating system’s user space. The
user agent provides the upper layer applications and communication protocols with
an interface to the VI Provider and a direct interface to the Virtual Interfaces (VIs).

The VI provider, colored dark gray in Figure 2.1, is responsible for the instan-
tiation of the virtual interfaces and completion queues, and consists of the kernel
agent and the NIC. In the VIA, the NIC implements and manages the virtual
interfaces and completion queues—which will both be further elaborated upon in
subsection 2.1.2—and is responsible for performing data transfers. The kernel agent
is part of the operating system and is responsible for resource management, e.g.,
creation and destruction of VIs, management of memory used by the NIC, and in-
terrupt management. Although communication between consumer and kernel agent
requires switches between user and kernel mode, this does not influence the latency
of data transfers because no data is actually transferred via this interface.

2.1.2 Data transfer
One of the most distinctive elements of the VIA, compared to the Internet protocol
suite, is the Virtual Interface (VI). Because of this direct interface to the NIC, each
process assumes that it owns the interface and there is no need for system calls when
performing data transfers. Each virtual interface consists of a send and a receive
work queue which can hold descriptors. These contain all information necessary
to transfer data, for example, destination addresses, transfer mode to be used, and
the location of data to be transferred in the main memory. Hence, both send and
receive data transfers are initiated by writing a descriptor memory structure to a
VI, and subsequently notifying the VI provider about the submitted structure. This

16

2.1 The Virtual Interface Architecture

kernel agent

CQsVIs

VIVIVIVIVIVI

network interface controller

VIVI

N×

send

k
e
r
n
e
l

m
o
d
e

u
s
e
r

m
o
d
e open;

connect;
register memory;

send;
receive;
RDMA read;
RDMA write;

OS communication interface

processes

VI provider VI consumer

user agent

recv CQ

M×

Figure 2.1: The Virtual Interface Architecture (VIA) model.

notification happens with the help of a doorbell, which is directly implemented in
the NIC. As soon as the NIC’s doorbell has been rung, it starts to asynchronously
process the descriptors.

When a transfer has been completed—successfully or with an error—the descrip-
tors are marked by the NIC. Usually, it is the consumer’s responsibility to remove
completed descriptors from the work queues. Alternatively, on creation, a VI can
be bound to a Completion Queue (CQ). Then, notifications on completed transfers
are directed to this queue. A CQ has to be bound to at least one work queue. This
means that, on the other hand, completion notifications of several work queues can
be redirected to one single completion queue. Hence, if there is an environment with
N virtual interfaces with each two work queues, there can be

0 ≤ M ≤ 2 · N (2.1)

completion queues.

17

2 Basics

The Virtual Interface Architecture supports two asynchronously operating data
transfer models: the send and receive messaging model and the Remote Direct Mem-
ory Access (RDMA) model. The characteristics of both models are described below.

Send and receive messaging model (channel semantics) This model is the con-
cept behind various other popular data transfer architectures. First, a receiving
node explicitly specifies where data which will be received shall be saved in its local
memory. In the VIA, this is done by submitting a descriptor to the receive work
queue. Subsequently, a sending node specifies the address of the data to be sent to
that receiving node in its own memory. This location is then submitted to its send
work queue, analogous to the procedure for the receive work queue.

Remote Direct Memory Access model (memory semantics) This approach is
lesser-known. When using the RDMA model, one node, the active node, specifies
both the local and the remote memory region. There are two possible operations in
this model: RDMA write and RDMA read. In the former, the active node specifies
a local memory region which contains data to be sent and a remote memory region
to which the data shall be written. In the latter, the active node specifies a remote
memory region which contains data it wants to acquire and a local memory region
to which the data shall be written. To initiate an RDMA transfer, the active node
has to specify the local and remote memory addresses and the operation mode in a
descriptor and submit it to the send work queue. The operating system and software
on the passive node are not aware of both RDMA operations. Hence, there is no
need to submit descriptors to the receive work queue at the passive side.

2.1.3 The virtual interface finite-state machine
The original VIA proposal defines four states in which a virtual interface can reside:
idle, pending connect, connected, and error. Transitions between states are handled
by the VI provider and are invoked by the VI consumer or events on the network.
The four states and all possible state transitions are depicted in the finite-state
machine in Figure 2.2. A short clarification on every state is given in the list below:

• Idle: A VI resides in this state after its creation and before it gets destroyed.
Receive descriptors may be submitted but will not be processed. Send de-
scriptors will immediately complete with an error.

• Pending connect: An active VI can move to this state by invoking a connec-
tion request to a passive VI. A passive VI will transition to this state when it
attempts to accept a connection. In both cases, it stays in this state until the
connection is completely established. If the connection request times out, the
connection is rejected, or if one of the VIs disconnects, the VI will return to
the idle state. If a hardware or transport error occurs, a transition to the er-
ror state will be made. Descriptors which are submitted to either work queue
in this state are treated in the same fashion as they are in the idle state.

18

2.2 The InfiniBand Architecture

• Connected: A VI resides in this state if a connection request it has submitted
has been accepted or after it has successfully accepted a connection request.
The VI will transition to the idle state if it itself or the remote VI disconnects.
It will transition to the error state on hardware, transport, or, dependent on
the reliability level of the connection, on other connection related errors. All
descriptors which have been submitted in previous states and did not result in
an immediate error and all descriptors which are submitted in this state are
processed.

• Error : If the VI transitions to this state, all descriptors present in both work
queues are marked as erroneous. The VI consumer must handle the error,
transition the VI to the idle state, and restart the connection if desired.

idle
pending
connect

error connected

accept connection;
request connection;

request connection timeout;
connection rejected;

disconnect;

disconnect;
accept returns;
request returns;

disconnect;

transport or
hardware error;

VI error;

create VI;

destroy VI;

Figure 2.2: The Virtual Interface Architecture (VIA) state diagram.

2.2 The InfiniBand Architecture
After a brief introduction on the Virtual Interface Architecture in section 2.1, this
section will further elaborate upon InfiniBand (IB). Because the VIA is an abstract

19

2 Basics

model, the purpose of the previous section was not to provide the reader with its
exact specification, but rather to give him/her a general idea of the VIA design
decisions. Since the exact implementation of various parts of the Virtual Interface
Architecture is left open, the InfiniBand Architecture (IBA) does not completely
correspond to the VIA. Therefore, a more comprehensive breakdown of the IBA
will be given in this section.

The InfiniBandSM Trade Association (IBTA) was founded by more than 180 com-
panies in August 1999 to create a new industry standard for inter-server communi-
cation. After 14 months of work, this resulted in a collection of manuals of which the
first volume describes the architecture [07] and the second the physical implemen-
tation of InfiniBand [16]. In addition, Pfister [Pfi01] wrote an excellent summary of
the IBA.

2.2.1 Basics of the InfiniBand Architecture
Network stack Like most modern network technologies, the IBA can be described
as a network stack, which is depicted in Figure 2.3. The stack consists of a physical,
link, network, and transport layer. The IBA implementations of the different layers

consumerconsumer

network

link encoding

media access control

port

t
r
a
n
s
p
o
r
t

n
e
t
w
o
r
k

l
i
n
k

p
h
y
s
i
c
a
l

consumer operations (verbs)

messages (QP)

inter subnet routing (GRH)

subnet routing (LRH)

flow control

CA’s port / physical link

IBA operations

segmentation & reassembly

Figure 2.3: The network stack of the InfiniBand Architecture (IBA).

are displayed in the right column of Figure 2.3. Although the present work attempts
to separate the different layers into different subsections, some features cannot be

20

2.2 The InfiniBand Architecture

explained without referring to features in other layers. Hence, the subsections do
not directly correspond with the different layers.

First, this subsection gives some basic definitions for InfiniBand. It also includes
some information about segmentation & reassembly of messages (although that is
part of the transport layer). The main component of the transport layer, the queue
pair, is presented in subsection 2.2.2. That subsection also points out some similar-
ities and differences between the VIA and the IBA. Then, after the basics of the
IBA subnet, the subnet manager, and managers in general are described in subsec-
tion 2.2.3, inner subnet routing and subnet routing will be elaborated upon in sub-
section 2.2.4. Subsequently, subsection 2.2.5 clarifies InfiniBand’s virtual lanes and
service levels. Subsection 2.2.6 and 2.2.7 go further into flow control and memory
management in the IBA, respectively. Finally, subsection 2.2.8 explains how com-
munication is established, managed, and destroyed.

An overview of the implementation of the physical link will not be given in the
present work. The technical details on this can be found in the second volume of
the InfiniBandTM Architecture Specification [16]. The implementation of consumer
operations will be elaborated upon later, in section 2.3.

Message segmentation Communication on InfiniBand networks is divided into
messages between 0 B and 232 B (2 GiB) for all service types, except for unreliable
datagram. The latter supports—depending on the Maximum Transmission Unit
(MTU)—messages between 0 B and 4096 B.

Messages that are bigger than the MTU, which describes the maximum size of
a packet, are segmented into smaller packets by IB hardware. The MTU can be—
depending on the hardware that is used—256, 512, 1024, 2048, or 4096 B. Since
segmentation and reassembly of packets is handled by hardware, the MTU should
not affect performance [CDZ05]. Figure 2.4 depicts the principle of breaking a
message down into packets. An exact breakdown of the composition of packets will
be described in subsection 2.2.4.

Payload
MTU bytes

ICRC
4 bytes

ETHs
[4,6,16,28] bytes

ImmDt
4 bytes

Payload
MTU bytes

ETHs
[4,6,16,28] bytes

ImmDt
4 bytes

N packets

Payload
MTU bytes

ICRC
4 bytes

ETHs
[4,6,16,28] bytes

ImmDt
4 bytes

message
N× MTU bytes

message
N× MTU bytes

ICRC
4 bytes

Figure 2.4: The segmentation of a message into packets.

21

2 Basics

Endnodes and channel adapters Ultimately, all communication on an InfiniBand
network happens between endnodes (also referred to as nodes in the present work).
Such an endnode could be a host computer, but also, for example, a storage system.
A Channel Adapter (CA) forms the interface between the soft- and hardware of an
endnode and the physical link which connects the endnode to a network. A channel
adapter can either be a Host Channel Adapter (HCA) or a Target Channel Adapter
(TCA). The former is most commonly used, and distinguishes itself from the latter
by implementing so-called verbs. Verbs form the interface between processes on a
host computer and the InfiniBand fabric; they are the implementation of the user
agent from Figure 2.1.

Service types InfiniBand supports several types of communication services which
are introduced in Table 2.1. Every channel adapter must implement Unreliable
Datagram (UD), which is conceptually comparable to UDP. HCAs must implement
Reliable Connections (RCs); this is optional for TCAs. The reliable connection is
similar to TCP. Neither of the channel adapter types is required to implement
Unreliable Connections (UCs) and Reliable Datagram (RD).

Table 2.1 describes the service levels on a very abstract level. More information
on the implementation, for example, on the different headers which are used in
IBA data packets, will be given later on. Furthermore, Table 2.1 already contains
references to the abbreviation QP, which stands for queue pair and is InfiniBand’s
equivalent to a virtual interface (section 2.1). This will be elaborated upon in the
next subsection.

2.2.2 Queue pairs & completion queues
As mentioned before, the InfiniBand Architecture is inspired by the Virtual Interface
Architecture. Figure 2.5, which is derived from Figure 2.1, depicts an abstract model
of the InfiniBand Architecture. In order to simplify this picture, the consumer and
kernel agent are omitted. In the following, the functioning principle of this model
will be explained.

Virtual interfaces are called Queue Pairs (QPs) in the IBA and also consists
of Send Queues (SQs) and Receive Queues (RQs). They are the highest level of
abstraction and enable processes to directly communicate with the HCA. After
everything has been initialized, a process will perform most operations on queue
pairs while communicating over an InfiniBand network.

Similarly to a descriptor in the VIA, a Work Request (WR) has to be submitted
to the send or receive queue in order to send or receive messages. Submitting a WR
results in a Work Queue Element (WQE) in the respective queue. Among others, a
WQE holds the address to a location in the host’s main memory. In case of a send
WQE, this memory location contains the data to be sent to a remote host. In case
of a receive WQE, the containing memory address points to the location in the main
memory to which received data shall be written. Not every QP can access all memory
locations; this protection is handled by specific memory management mechanisms.

22

2.2 The InfiniBand Architecture

Table 2.1: InfiniBand Architecture’s service types.

Service Type Description

Reliable Connection (RC) In this mode, one QP on a local node is connected
to one QP on a remote node. This service type
ensures message delivery to—thus not consump-
tion by—the remote node. Messages are sent in
order and a combination of hardware and channel
adapter software resends at communication failure.

Unreliable Connection (UC) Like RC, this service type connects one local QP
with one remote QP. It is unreliable and thus does
not support acknowledgment of delivery and simply
drops undelivered messages.

Unreliable Datagram (UD) This service type allows a local QP to commu-
nicate with any other unreliable datagram QP
without connecting to it. Like UC, this mode is
unreliable and thus simply drops packets if they
get lost.

The ability to send data to another QP without
connecting to it is beneficial for scalability.

Reliable Datagram (RD) Reliable datagram enables a local QP to commu-
nicate with any other RD QP without connecting
to it. Contrary to UD, this service type is reliable
and thus tries to resend messages when they get
lost.

Since reliable datagram is not implemented in the
OFEDTM stack (section 2.3), hence not practi-
cally usable, it will not be further discussed in the
present work.

Raw Datagram This allows a QP to send raw datagram mes-
sages, which means that IBA specific headers are
stripped from the packets. This service type can
be divided into IPv6 raw datagram and EtherType
raw datagram.

This service type will not be further discussed in
the present work.

23

2 Basics

c
h
a
n
n
e
l

a
d
a
p
t
e
r

main memory QPs CQs

VIVIVIVIVIVIQPQP

N×

send CQ

M×

0x0E

0x0D

0x0C

0x0B

0x0A

...

0x0F

...

recv

port 1

t
r
a
n
s
p
o
r
t

arbiter

VL 1 VL 2 VL P

port 2

arbiter

VL 1 VL 2 VL P

port Q

arbiter

VL 1 VL 2 VL P

I
B
A

m
e
m
o
r
y

m
a
n
a
g
e
m
e
n
t

DMA engineDMA engine

Figure 2.5: The InfiniBand Architecture (IBA) model.

These also handle which locations may be accessed by the remote hosts and by the
HCA. More information on memory management can be found in subsection 2.2.7.

A work queue element in the send queue also contains the network address of the
remote endnode and the transfer model, e.g., the send messaging model or an RDMA
model. Except for the initialization of data transmissions, a work request can be
used to bind a memory window to a memory region. This is further enlarged upon
in subsection 2.2.7. A more comprehensive overview of the composition of WRs in
general will be provided in section 2.3.

Example Figure 2.6 shows an example with three queue pairs in one node—in this
example called sending node—that communicate with three queue pairs of another
node—here, receiving node. Note that a queue pair is always initialized with a send
and a receive queue; for the sake of clarity, the unused queues have been omitted in

24

2.2 The InfiniBand Architecture

completion queues completion queues

receive queuessend queues

WQEWQEWQE

consumer

WQEWQE

WQE

WQE

CQE CQECQE

send
work

request

HCA

WQEWQEWQE

consumerWQEWQE

CQE

recv.
work

request

HCA

CQECQE

message

WQEWQEWQE

WQEWQE WQEWQE

WQEWQE

work
compl.

work
compl.CQE CQECQE

sending node receiving node

CQECQE

Figure 2.6: Three Send Queues (SQs) on a sending node communicate with three
Receive Queues (RQs) on a receiving node. Both nodes have both a send
and a receive queue, but the unused queues have been omitted for the
sake of clarity.

this depiction. Hence, the image shows no receive queues for the sending node and
no send queues for the receiving node.

First, before any message can be transmitted between the two nodes, the receiving
node has to prepare receive WQEs by submitting receive work requests to the receive
queues. Every receive WR includes a pointer to a local memory region, which
provides the HCA with a memory location to save received messages to. In the
picture, the consumer is submitting a WR to the red receive queue.

Secondly, send work requests may be submitted, which will then be processed by
the channel adapter. Although the processing order of the queues depends on the
priority of the services (subsection 2.2.5), on congestion control (subsection 2.2.6),
and on the manufacturer’s implementation of the HCA, WQEs in a single queue will
alway obey the first-in, first-out (FIFO) principle. In this image, the consumer is
submitting a send work request to the red send queue, and the HCA is processing
a WQE from the blue send queue.

After the HCA processed a WQE, it places a Completion Queue Entry (CQE) in
the completion queue. This entry contains, among others, information about the
WQE which was processed, but also about the status of the operation. The status
could indicate a successful transmission, but also an error, e.g., if not sufficient
receive work queue elements were available in the receive queue. A CQE is posted

25

2 Basics

when a WQE is completely processed, so the exact moment that it is posted depends
on the service type that is used. E.g., if the service type is unreliable, the WQE
will be completed as soon as the channel adapter processed it and sent the data.
However, if a reliable service type is used, the WQE will not complete until the
message is successfully received by the remote host.

Obviously, after the message has been sent over the physical link, the receiving
node’s HCA will receive that same message. Then, it will acquire the destination QP
from the packets’ base transport headers—more on that in subsection 2.2.4—and
grab the first available element from that QP’s receive queue. In the case of this
example, the channel adapter is consuming a WQE from the blue receive queue.
After retrieving a work queue element, the HCA will read the memory address from
the WQE and write the message to that memory location. When it is done doing
so, it will post a completion queue entry to the completion queue. If the consumer
of the sending node included immediate data in the message, that will be available
in the CQE at the receive side.

Processing WQEs After a process has submitted a work request to one of the
queues, the channel adapter starts processing the resulting WQE. As can be seen in
Figure 2.5, an internal Direct Memory Access (DMA) engine will access the memory
location which is included in the work queue element, and will copy the data from the
host’s main memory to a local buffer of the HCA. Every port of an HCA has several
of these buffers which are called Virtual Lanes (VLs). Subsequently, separately for
every port, an arbiter decides from which virtual lane packets will be sent onto the
physical link. How packets are distributed among the virtual lanes and how the
arbiter decides from which virtual lane to send is explained in subsection 2.2.5.

Queue pair state machine Like the virtual interfaces in section 2.1, queue pairs
can reside in several states as depicted in Figure 2.7. All black lines are normal
transitions and have to be explicitly initialized by a consumer with a modify queue
pair verb. Red lines are transitions to error states, which usually happen automat-
ically. Because this diagram is more extensive than the state machine of the VIA
(Figure 2.2), the descriptions of the state transitions are omitted in this figure. All
states, their characteristics, and the way to enter the state are summarized in the
list below. Every list item has a sublist which provides information on how work
requests, received messages, and messages to be sent are handled.

• Reset: When a QP is created, it enters this state. Although this is not
depicted, a transition from all other states to this state is possible.

– Submitting work requests will return an immediate error.
– Messages that are received by the HCA and targeted to this QP will

be silently dropped.
– No messages are sent from this QP.

26

2.2 The InfiniBand Architecture

reset

create QP;

error SQ drain ready to
receive

initialized

ready to
sendSQ error

destroy QP;

Figure 2.7: The state diagram of a Queue Pair (QP) in the InfiniBand Architecture
(IBA).

• Initialized: This state can be entered if the modify queue pair verb is called
from the reset state.

– Work requests may be submitted to the receive queue but they will
not be processed in this state. Submitting a WR to the send queue will
return an immediate error.

– Messages that are received by the HCA and targeted to this QP will
be silently dropped.

– No messages are sent from this QP.

• Ready to receive: This state can be entered if the modify queue pair verb
is called from the initialized state. The QP can reside in this state if it only
needs to receive, and thus not to send, messages.

– Work requests may be submitted to the receive queue and they will be
processed. Submitting a WR to the send queue will return an immediate
error.

27

2 Basics

– Messages that are received by the HCA and targeted to this QP will
be processed as defined in the receive WQEs.

– No messages are sent from this QP. The queue will respond to received
packets, e.g., acknowledgments.

• Ready to send: This state can be entered if the modify queue pair verb is
called from the ready to receive or SQ drain state. Mostly, QPs reside in this
state because the queue pair is able to receive and send messages and is thus
fully operational.

– Work requests may be submitted to both queues; WQEs in both queues
will be processed.

– Messages that are received by the HCA and targeted to this QP will
be processed as defined in the receive WQEs.

– Messages are sent for every WR that is submitted to the send queue.

• SQ drain: This state can be entered if the modify queue pair verb is called
from the ready to send state. This state drains the send queue, which means
that all send WQEs that are present in the queue when entering the state will
be processed, but all WQEs that are submitted after it entered this state will
not be processed. The state has two internal states: draining and drained.
While residing in the former, there are still work queue elements that are
being processed. While residing in the latter, there are no more work queue
elements that will be processed. When the SQ drain state transitions from
the draining to the drained state, it generates an affiliated asynchronous event.

– Work requests may be submitted to both queues. WQEs in the receive
queue will be processed. WQEs in the send queue will only be processed
if they were present when entering the SQ drain state.

– Messages that are received by the HCA and targeted to this QP will
be processed as defined in the receive WQEs.

– Messages are sent only for WRs that were submitted before the QP
entered this state.

• SQ error : When a completion error occurs while the QP resides in the
ready to send state, a transition to this state happens automatically for all
QP types except the RC QP. Since an error in a WQE can cause the local or
remote buffers to become undefined, all WQEs subsequent to the erroneous
WQE will be flushed from the queue. The consumer can put the QP back to
the ready to send state by calling the modify queue pair verb.

– Work requests may be submitted to the receive queue and will be
processed in this state. WRs that are submitted to the send queue will
be flushed with an error.

– Messages that are received by the HCA and targeted to this QP will
be processed as defined in the receive WQEs.

28

2.2 The InfiniBand Architecture

– No messages are sent from this QP. The queue will respond to received
packets, e.g., acknowledgments.

• Error : Every state may transition to the error state. This can happen
automatically—when a send WR in an RC QP completes with an error or
when a receive WR in any QP completes with an error—or explicitly—when
the consumer calls the modify queue pair verb. All outstanding and newly
submitted WRs will be flushed with an error.

– Work requests to both queues will be flushed immediately with an
error.

– Packets that are received by the HCA and targeted to this QP will
be silently dropped.

– No packets are sent.

State transitions that are marked with black lines, which must be explicitly in-
voked by the consumer, will not succeed if the wrong arguments are passed to the
modify queue pair verb. The first volume of the InfiniBandTM Architecture Spec-
ification [07] provides a list of all state transitions and the required and optional
attributes that can be passed on to the verb. The present work will not provide the
complete list of all transitions with their attributes, and will in the following only
provide some examples of important states.

Queue pairs are not immediately ready to establish a connection after they have
been initialized to the reset state. To perform the transition reset → initialized, the
partition key index and, in case of unconnected service types, the queue key has
to be provided. Furthermore, RDMA and atomic operations have to be enabled or
disabled in this transition. A second important transition is initialized → ready to
receive because here, in case of a connected service, the QP will connect to another
QP. The consumer has to provide the modify QP verb with, among others, the
remote node address vector and the destination Queue Pair Number (QPN) before
it can perform the transition. If the QP must operate in loopback mode, this has
to be defined here as well.

2.2.3 The InfiniBand Architecture subnet
The smallest entity in the InfiniBand Architecture is a subnet. It is defined as
a network of at least two endnodes, connected by physical links and optionally
connected by one or more switches. Every subnet is managed by a Subnet Manager
(SM).

One task of switches is to route packets from their source to their destination,
based on the packet’s Local Identifier (LID) (subsection 2.2.4). The local identifier
is a 16-bit wide address of which 48K values can be used to address endnodes in the
subnet and 12K addresses are reserved for multicast. Switches support multiple ser-
vice levels on several virtual lanes, which will be elaborated upon in subsection 2.2.5.

29

2 Basics

It is possible to route between different subnets with a 128-bit long Global Iden-
tifier (GID) (subsection 2.2.4).

Subnet manager In order for endnodes on a subnet to communicate properly
with each other and for the operation of the subnet to be guaranteed, at least
one managing entity has to be present to coordinate the network. Such an entity is
called Subnet Manager (SM) and can either be located on an endnode, a switch, or
a router. Tasks of the SM are:

• discovering the topology of the subnet (e.g., information about switches and
nodes, including, for example, the MTU);

• assigning LIDs to CAs;

• establishing possible paths and loading switches’ routing tables;

• regularly scanning the network for (topology) changes.

init;

standby

non-active

discovering master

discovery completed;

DISABLE;STANDBY;

HANDOVER;

ACHKNOWLEDGE;

HANDOVER;

SM with higher
priority;
master detected;

respond to poll;
topology change;
HANDOVER;

polling
timeout;
DISCOVER;

Figure 2.8: The state machine for the initialization of a Subnet Manager (SM). At-
tributeModifiers from the Management Datagram (MAD) header (Fig-
ure 2.9) are completely written in capital letters.

A subnet can contain more than one manager but only one of them may be the
master SM. All others must be in standby mode. Figure 2.8 depicts the state
machine a subnet manager goes through to identify whether it should be master
or not. An SM starts in the discovering state in which it scans the network. As
soon as it discovers another SM with a higher priority, it transitions into standby

30

2.2 The InfiniBand Architecture

mode in which it keeps polling the newly found manager. If the polled manager
fails to respond (polling time-out), the SM goes back to the discovering state. If the
node completes the discovery without finding a master or a manager with a higher
priority, it transitions into the master state and starts to initialize the subnet. A
master can put other SMs which are currently in standby mode and have a lower
priority in the non-active mode by sending a DISABLE datagram. If it detects an
SM in standby mode with a higher priority, it will exchange the mastership. To do
so, it will send a HANDOVER datagram, which will transition the newly found SM
into the master state. If that SM responds with an ACKNOWLEDGE datagram,
the old master will move to the standby state.

Subnet management agents Every endnode has to contain a passive acting Sub-
net Management Agent (SMA). Although agents can send a trap to the SM—for
example if the Global Unique Identifier (GUID) changes at runtime—they usually
only respond to messages from the manager. Messages from the SM to an SMA can,
for example, include the endnode’s LID or the location to send traps to.

Subnet administration Besides SMs and SMAs, the subnet also contains a Subnet
Administration (SA). The SA is closely connected to the SM and often even a
part of it. Through subnet administration class management datagrams, endnodes
can request information to operate on the network from the administrator. This
information can, for example, contain data on paths, but also non-algorithmic data
such as service level to virtual lane mappings.

Management datagrams Management Datagrams (MADs) are used to commu-
nicate management instructions. They are always 256 B—the exact size of the min-
imal MTU—and are divided into several subclasses. There are two types of MADs:
one for general services and subnet administration, and one for subnet management.
The subnet management MAD is used for communication between managers and
agents, and is also referred to as Subnet Management Packet (SMP). The subnet
administration MAD is used to receive from and send to the subnet administration,
and falls under the category of General Management Packets (GMPs). Other than
the SA, general services like performance management, baseboard management, de-
vice management, SNMP tunneling, communication management (subsection 2.2.8),
and some vendor and application specific protocols make use of GMPs.

Figure 2.9 shows the management datagram base format. It is made up of a
common header (between byte 0 and 23) which is used by all management packets;
both SMPs and GMPs use this header. The header is followed by a 232 B data field
which is different for every management datagram class.

SMPs have some particular characteristics. To ensure their transmission, VL15 is
exclusively reserved for SMPs. This lane is not subjected to flow control restriction
(subsection 2.2.6) and it is passed through the subnet ahead of all other virtual
lanes. Furthermore, SMPs can make use of directed routing, which means that the

31

2 Basics

bits
bytes

 0 - 3

 4 - 7

31 - 24 23 - 16 15 - 8 7 - 0

ClassVersionBaseVersion

ClassSpecific

 8 - 11

12 - 15

16 - 19

20 - 23

24 - 27

...

252 - 255

...

Data [255,244]

AttributeModifier

TransactionID [31, 0]

TransactionID [63,32]

Status

MgmtClass R

AttributeID

Data [31, 0]

Method

Figure 2.9: The composition of a Management Datagram (MAD). The first 24 B are
reserved for the common MAD header. The header is followed by up to
232 B of MAD class specific data.

ports of the switch it should exit can be defined instead of a local identifier. SMPs
are always received on QP0.

Usually, GMPs may use any virtual lane but VL15 and any queue pair, but this
is different for SA MADs. Although they can use any virtual lane but VL15, they
have to be sent to QP1.

2.2.4 Data packet format & addressing
Figure 2.10 shows the composition of a complete InfiniBand data packet. Blocks
with a dashed border are optional—e.g., the Global Routing Header (GRH) is not
necessary if the packet does not leave the subnet from which it originated—and
blocks with continuous borders are mandatory—e.g., the Cyclic Redundancy Checks
(CRCs) have to be computed for every packet.

In order to send data to non-IBA subnets, the architecture supports raw packets in
which the InfiniBand specific transport headers and the invariant CRC are omitted.
The present work will not go into detail on raw packets; more information on these
packets can be found in the IBA specification [07].

Important information about the different kinds of transport headers, immediate
data, the payload, and the two kinds of CRCs can be found in Table 2.2. Because of
their importance, information on the local and global routing header will be given
in a separate section below.

32

2.2 The InfiniBand Architecture

ETHs
[4,6,16,28] byte

ImmDt/IETH
4 byte

Payload
MTU byte

ICRC
4 byte

VCRC
2 byte

GRH
40 byte

BTH
12 byte

RDETH
4 byte

DETH
8 byte

RETH
16 bytes

AtomicETH
28 byte

AETH
4 byte

AtomicAckETH
8 byte

LRH
8 byte

Figure 2.10: The composition of a complete packet in the InfiniBand Architecture
(IBA).

Table 2.2: Explanation of abbreviations from Figure 2.10. More details on the con-
tent of the different packets can be found in the IBA specification [07].

Abbreviation Description

LRH Local Routing Header: detailed information on this header is
provided in a separate paragraph below.

GRH Global Routing Header: detailed information on this header is
provided in a separate paragraph below.

BTH Base Transport Header: Every packet in the IBA contains this
header. It contains fields for the IBA transport and holds,
i.a., the packet type, the destination queue pair number, and
the packet sequence number.

ETHs Extended Transport Headers: These headers are optional and
are used if applicable, based on the packet type in the BTH.
All following headers which end with ETH are extended trans-
port headers.

RDETH Reliable Datagram Extended Transport Header: This header
contains the end-to-end context, used with the reliable data-
gram service type.

DETH Datagram Extended Transport Header: This header contains
the queue key and the source queue pair number for datagram
transfers.

RETH RDMA Extended Transport Header: This header contains the
virtual address, remote key, and DMA length for an RDMA
operation.

AtomicETH Atomic Extended Transport Header: This header is used for
atomic operations and is similar to the RETH. Instead of a
length field, it contains a swap (or add) field and a compare
data field.

33

2 Basics

AETH ACK Extended Transport Header: This header serves as ac-
knowledge field in RDMA read response first, RDMA read
response last, RDMA read response only, and acknowledge
packets.

AtomicAckETH Atomic ACK Extended Transport Header: This header is sim-
ilar to the AETH, but for atomic acknowledgments. It only
contains the original remote data.

ImmDt Immediate Data: This optional block can be used to add 32 bit
of custom data to send or RDMA write packets. The con-
taining 32 bit of data will be visible in the receive completion
queue element.

IETH Invalidate Extended Transport Header: This header contains a
remote key which will be used to invalidate a remote memory
region.

Payload Payload: This is the actual payload to be sent. This field will
be as big as the MTU of the network.

ICRC Invariant CRC: This is the redundancy check for blocks
that do not change during their transmission from source to
destination.

The CRC which is used is the same as in the Ethernet stan-
dard: the CRC-32 with the polynomial 0x04C11DB7.

VCRC Variant CRC: This is the redundancy check for blocks that do
change during their transmissing from source to destination.

Local routing header The Local Routing Header (LRH) contains all necessary
information for a packet to be correctly passed on within a subnet. Figure 2.11
depicts the composition of the LRH.

The most crucial fields of this header are the 16-bit source and destination local
identifier fields. A channel adapter’s port can be uniquely identified within a subnet
by its LID, which the subnet manager assigns to every port in the subnet. Besides
with an identifier, the subnet manager also provides CAs with an LID Mask Control
(LMC). This value, which can range from 0 to 7, indicates how many low order bits
of the LID can be ignored by the CA in order to determine if a received packet is
targeted to that CA. These bits are also called don’t care bits, and switches do not
ignore them; this results in up to 128 different paths to a port in a subnet, which
is a large benefit. Consequently, with this mask, it is possible to reach one single
port with up to 128 different unicast LIDs. As mentioned earlier, the 16-bit LID
can hold approximately 48K unicast entries and 16K multicast entries.

34

2.2 The InfiniBand Architecture

The 11-bit packet length field indicates the length of the complete packet in 4-byte
words. This not only includes the length of the payload, but also of all headers. The
VL and SL fields indicate which virtual lane and service level are used, respectively.
Later, in subsection 2.2.5, virtual lanes, service levels, and their connection will be
explained in more detail.

The 4-bit LVer field indicates which link level protocol is used. LNH stands for
Link Next Header and this 2-bit field indicates the header that follows the mandatory
local routing header. The LNH’s most significant bit (MSB) indicates if the packet
uses IBA transport or raw transport. The second bit indicates if an optional GRH
is present.

bits
bytes 31 - 24 23 - 16 15 - 8 7 - 0

destination local identifier

source local identifier

LNHVL LVer SL

packet length

 0 - 3

 4 - 7

Figure 2.11: The composition of the Local Routing Header (LRH).

Global routing header The Global Routing Header (GRH) contains all necessary
information for a packet to be correctly passed on by a router between subnets.
Figure 2.12 depicts the composition of the GRH.

The most crucial fields of this header are the 128-bit source and destination global
identifier fields. Figure 2.13 shows the possible compositions of a GID. Figure 2.13a
shows the composition of the unicast GID; it consists of a GID prefix—more on
that later—and a GUID. The GUID is an IEEE 64-bit Extended Unique Identifier
(EUI-64) and uniquely identifies each element in a subnet [17]. The GUID is always
present in a unicast global identifier. The 24 MSBs of the GUID are reserved for
the company identifier, which is assigned by the IEEE Registration Authority. The
40 least significant bits (LSBs) are assigned to a device by the said company, to
uniquely identify it. The subnet manager may change the GUID if the scope is set
to local, more on that below.

The composition of the 64-bit prefix depends on the scope in which packets will
be sent. It all comes down to three cases, which are listed below. The enumeration
of the list below corresponds to the enumeration in Figure 2.13a. Each port will
have at least one unicast GID, which is referred to as GID index 0. This GID can
be created using the first or the second option from the list below. Both options are
based on the default GID prefix 0xFE80::0. Packets that are constructed using the
default GID prefix and a valid GUID must always be accepted by an endnode, but
must never be forwarded by a router. That means that packets with only a GID
index 0 are always restricted to the local subnet.

35

2 Basics

bits
bytes

 0 - 3

 4 - 7

31 - 24 23 - 16 15 - 8 7 - 0

flow label

HopLmt

IPVer TClass

NxtHdr

 8 - 11

12 - 15

16 - 19

20 - 23

24 - 27

28 - 31

32 - 35

36 - 39 destination global identifier [31, 0]

destination global identifier [63,32]

destination global identifier [95,64]

destination global identifier [127,96]

source global identifier [31, 0]

source global identifier [63,32]

source global identifier [95,64]

source global identifier [127,96]

PayLen

Figure 2.12: The composition of the Global Routing Header (GRH).

GUID (IEEE EUI-64)
64 bit

GID prefix
64 bit

company_id
24 bit

extension id
40 bit

0x3FA
10 bit

0x0::0
54 bit

0x3FB
10 bit

0x0::0
38 bit

subnet prefix
16 bit

GID prefix
64 bit

1.

2.

3.

(a) The three possible compositions of a unicast GID.

multicast GID
112 bit

0xFF
8 bit

flags
4 bit

scope
4 bit

(b) The composition of a multicast GID.

Figure 2.13: The possible structures of Global Identifiers (GIDs).

36

2.2 The InfiniBand Architecture

1. Link-local: The global identifier only consists of the default GID prefix
0XFE80::0 and the device’s EUI-64 and is only unique within the local sub-
net. Routers will not forward packets with this global identifier. 0x3FA in
Figure 2.13a is another representation of the default GID prefix:

0x3FA = (0xFE8 � 2). (2.2)

It is used to clarify the extra bit which has to be set in the second option of
this list. The two LSBs of 0xFE8 which are eliminated by the right shift are
zero and are absorbed by the 54-bit 0x0::0 block.

2. Site-local: The global identifier consists of the default GID prefix with the
54th bit of the GID prefix set to ‘1’. In the representation of Figure 2.13a,
this corresponds to:

0x3FB = (0xFE8 � 2) + 1 = 0x3FA + 1. (2.3)

The 16-bit subnet prefix is set to a value chosen by the subnet manager. This
GID is unique in a collection of connected subnets, but not necessarily globally.

3. Global: This is the only GID type which is forwarded by routers, since it is
guaranteed to be globally unique.

Multicast GIDs, as depicted in Figure 2.13b, are fundamentally different from
unicast GIDs. To indicate that it is a multicast packet, the 8 MSBs are all set
to ‘1’. The LSB of the flags field indicates whether it is a permanently assigned
multicast GID (‘0’) or not (‘1’). The remaining three bits of the flags block are
always ‘0’. The 4-bit scope field indicates the scope of the packet. E.g., if scope
equals 0x2, a packet will be link-local and if scope equals 0xE, a packet will be global.
The complete multicast address scope is described in the IBA specification [07]. The
122 LSBs are reserved for the actual multicast GID.

Although the source and destination identifiers account for 80 % of the global
routing header (Figure 2.12), there are some other fields. The 4-bit IPVer field
indicates the version of the header and the 8-bit TClass field indicates the global
service level, which will be elaborated upon in subsection 2.2.5. The 20-bit flow label
field helps to identify groups of packets that must be delivered in order. The 8-bit
NxtHdr field identifies the header which follows the GRH in the IBA packet. This is,
in case of a normal IBA packet, the IBA transport header. The only remaining block
is the 8-bit HopLmt, which limits the number of hops a packet can make between
subnets, before being dropped.

2.2.5 Virtual lanes & service levels
Virtual Lanes (VLs) are independent sets of receive and transmit packet buffers. A
channel adapter can be seen as a collection of multiple logical fabrics—lanes—which
share a port and physical link.

37

2 Basics

As introduced in subsection 2.2.1 and in particular in Figure 2.4, after a WQE
appears in the send queue, the channel adapter segments the message (i.e., the data
the WQE points to) into smaller chunks of data and forms IBA packets, based on
the information present in the WQE. Subsequently, a DMA engine copies them to
a virtual lane.

Every switch and channel adapter must implement VL15 because it is used for
subnet management packets (subsection 2.2.3). Furthermore, between 1 and 15
additional virtual lanes VL0...14 must be implemented for data transmission. The
actual number of VLs that is used by a port (1, 2, 4, 8, or 15) is determined by
the subnet manager. Until the SM has determined how many VLs are supported on
both ends of a connection and until it has programmed the port’s SL to VL mapping
table, the mandatory data lane VL0 is used.

To understand QoS in InfiniBand, which signifies the ability of a network tech-
nology to prioritize selected traffic, it is essential to understand how packets are
scheduled onto the VLs. Crupnicoff, Das, and Zahvai [CDZ05] did a great deal of
describing the functioning of QoS in the IBA. This section will first explain how
packets are scheduled onto the VLs. Then, it will describe how the virtual lanes
are arbitrated between the actual physical link that is connected to the channel
adapter’s port.

Scheduling packets onto virtual lanes The IBA defines 16 Service Levels (SLs).
The 4-bit field that represents the SL is present in the local routing header (Fig-
ure 2.11) and stays constant during the packet’s path through the subnet. The SL
depends on the service type which is used (Table 2.1). The first volume of the IBA
specification [07] describes how the level is acquired for the different types. Besides
the SL field, there is also the VL field in the LRH. This is set to the virtual lane
the packet is sent from, and, as will be discussed below, may change during its path
through the subnet.

Although the architecture does not specify a relationship between certain SLs and
forwarding behavior—this is left open as a fabric administration policy—there is a
specification for SL to VL mapping in switches. If a packet arrives in a switch, the
switch may, based on a programmable SLtoVLMappingTable, change the lane the
packet is on. This also changes the corresponding field in the LRH. It may happen
that a packet on a certain VL passes a packet on another VL while transitioning
through a switch. Service level to virtual lane mapping in switches allows, among
others, interoperability between CAs with different numbers of lanes.

There is a similar mechanism to service levels for global routing: the traffic class
(TClass) field in the GRH (Figure 2.12). The present work will not further elaborate
upon traffic classes.

Arbitrating the virtual lanes The arbitration of virtual lanes to an output port
has yet to be discussed. Figure 2.14 depicts the logic in the arbiters which were
previously depicted in Figure 2.5 as a black box. The arbitration is implemented

38

2.2 The InfiniBand Architecture

c
h
a
n
n
e
l

a
d
a
p
t
e
r

c
h
a
n
n
e
l

a
d
a
p
t
e
r

a
r
b
i
t
e
r

mux

high
priority
WRR

limit
high
priority

low
priority
WRR

port

VL 1 VL 2 VL P

port

physical link

a
r
b
i
t
e
rdemuxSL to VL

mapping

VL 1 VL 2 VL R

Figure 2.14: Functional principle of the arbiter.

as a dual priority weighted round robin (DPWRR) scheme. It consists of a high
priority-WRR table, a low priority-WRR table, and a limit high priority counter.
Both tables are lists with a field to indicate the index of a virtual lane and a weight
with a value between 0 and 255. The counter keeps track of the number of high
priority packets that were sent and whether that number exceeds a certain threshold.

If at least one entry is available in the high priority table and the counter is not
exceeded, this table is active and a packet from this table will be sent. Which packet
depends on the weighted round robin scheme. E.g., two lanes, VL0 and VL1, are
listed in a table and they have a weight of 2 and 3, respectively. When the table is
active, in 2

2+3 ·100 % = 40 % of the cases a packet from VL0 and in 3
2+3 ·100 % = 60 %

of the cases a packet from VL1 will be sent.

39

2 Basics

If the counter reaches its threshold, a packet from a low priority lane will be sent
and the counter is reset to 0. If the high priority table is empty, the low priority
table will be checked immediately.

VL15 is not subjected to these rules and always has the highest priority. A VL
may be listed in either one or in both tables at the same time. There may be more
than one entry of the same VL in one table.

The bottom of Figure 2.14 shows how packets are distributed among virtual lanes
based on their SL. This is similar to the mapping in switches, as described above.
Figure 2.14 does not depict a switch and assumes a direct connection between two
channel adapters.

2.2.6 Congestion control

InfiniBand is a lossless fabric, which means that congestion control does not rely on
dropping packets. Packets will only be dropped during severe errors, e.g., during
hardware failures. InfiniBand supports several mechanisms to deal with conges-
tion without dropping packets. In the following, two control mechanisms will be
described.

Link-level flow control The first mechanism, Link-Level Flow Control (LLFC),
prevents the loss of packets caused by a receive buffer overflow. This is done by syn-
chronizing the state of the receive buffer between source and target node with Flow
Control Packets (FC packets), of which the composition is depicted in Figure 2.15.
Flow control packets coexists with data packets, which were presented in subsec-
tion 2.2.4.

Flow control packets for a certain virtual lane shall be sent during the initialization
of the physical link and prior to the passing of 65,536 symbol times since the last
time such a packet was sent for that VL. A symbol time is defined as the time it
takes to transmit an 8 bit data quantity onto a physical lane. If the physical link is
in initialization state (referred to as LinkInitialize in the IBA specification [07]), Op
shall be ‘1’in the flow control packet. If the packet is sent when the link is up and
not in failure (LinkArm or LinkActive), Op shall be ‘0’.

bits
bytes 31 - 24 23 - 16 15 - 8 7 - 0

FCCLOp FCTBS

LPCRC

 0 - 3

 4 - 7

VL

Figure 2.15: The structure of a Flow Control Packet (FC packet).

40

2.2 The InfiniBand Architecture

The flow for a complete synchronization—from a source node with a sending
queue, to a target node with a receiving queue, back to the sending queue—is
described in the list below and depicted in Figure 2.16. Flow control packets are
sent on a per virtual lane base; the 4-bit VL field is used to indicate the index of
VLi. VL15 is excluded from flow control.

target CAsource CA FCTBS

FCCL

1 2

34

≘ snippet of flow control packet

Figure 2.16: Working principle of Link-Level Flow Control (LLFC) in the InfiniBand
Architecture (IBA).

1. Set FCTBS & send FC packet: Upon transmission of an FC packet, the
12-bit Flow Control Total Blocks Sent (FCTBS) field of the FC packet is set
to the total number of blocks transmitted since the VL was initialized. The
block size of a packet i is defined as

Bpacket,i =
⌈
Si/64

⌉
, (2.4)

with Si the size of a packet, including all headers, in bytes. Hence, the total
number of blocks transmitted at a certain time is defined as:

FCTBS = Btotal =
∑

i

Bpacket,i. (2.5)

2. Set and update ABR: Upon receipt of an FC packet, a 12-bit Adjusted
Block Received (ABR) field is set to:

ABR = FCTBS. (2.6)

Every time a data packet is received and not discarded due to lack of receive
capacity, the value is updated according to:

ABR = ABR + (Bpacket mod 4096), (2.7)

with Bpacket the block size of the received data packet.

41

2 Basics

3. Set FCCL & send FC packet: Upon transmission of an FC packet, the 12-
bit Flow Control Credit Limit (FCCL) has to be generated. If the receive buffer
could permit the receipt of 2048 or more blocks of every possible combination
of data packets in the current state, the credit limit is set to:

FCCL = ABR + 2048 mod 4096. (2.8)

Otherwise, it is set to:

FCCL = ABR + NB mod 4096, (2.9)

with NB the number of blocks the buffer could receive in the current state.

4. Use FCCL for data packet transmission: After a valid FCCL is received,
it can be used to decide whether a data packet can be received by a remote
node and thus whether it should be sent. To make this decision, a variable C
is defined:

C = (Btotal + Bpacket) mod 4096, (2.10)
with Btotal the total blocks sent since initialization and Bpacket the block size
of the packet which will potentially be transmitted. If the condition

(FCCL − C) mod 4096 ≤ 2048 (2.11)

holds, the data packet may be sent.

Feedback based control architecture Figure 2.17 illustrates how the Congestion
Control Architecture (CCA) works. Similar to link-level flow control, the CCA only
controls data VLs; VL15 is excluded and thus SMPs will never be restricted.

The control consists of five steps that are listed below. The enumeration of the
list below corresponds to the numbers in Figure 2.17.

1. Detection: The first step is the actual detection of congestion. This is done by
monitoring a virtual lane of a given port and reviewing whether its throughput
exceeds a certain threshold. This threshold is set by the Congestion Control
Manager (CCM) and must always be between 0 and 15, where a value of 0
will turn off congestion control completely and a value of 15 corresponds to a
very low threshold and thus aggressive congestion control on that virtual lane.
If the threshold is reached, the Forward Explicit Congestion Notification (FECN)
flag in the base transport header is set before the packet is forwarded to its
destination.

2. Response: When an endnode receives a packet where the FECN flag in the
BTH is set, it sends a Backward Explicit Congestion Notification (BECN) back
to node the packet came from. In the case of connected communication (e.g.,
reliable connection, unreliable connection), the response might be carried in
an ACK packet. If communication is unconnected (e.g., unreliable datagram)
an additional congestion notification packet has to be sent.

42

2.2 The InfiniBand Architecture

switchsource CA target CA

BTH.FECN = ‘1’

BTH.BECN = ‘1’

1

2

3 CCT

read CCT

CCM

4

TMR

5

index i

threshold

≘ snippet of data packet

Figure 2.17: Working principle of the Congestion Control Architecture (CCA). The
Congestion Control Table (CCT), timer (TMR), and threshold value
are initialized by the Congestion Control Manager (CCM).

3. Determine injection rate reduction: When a node receives a packet with
the BECN flag set, an index (illustrated as i in Figure 2.17) will be increased
by a preset value. This index is used to read from the Congestion Control
Table (CCT). This table is set by the CCM during initialization and contains
inter-packet delay values. The higher the index i, the higher the delay value
it points to.

4. Set injection rate reduction: The value from the CCT will be used to
reduce the injection rate of packets onto the physical link. The reduction can
either be applied to the QP that caused the packet which got an FECN flag,
or to all QPs that use a particular service level (and thus virtual lane).

5. Injection rate recovery: After a certain time, which is set by the CCM as
well, the index i, and thus also the inter-packet delay, is reduced again. If no
more BECN flags are received, i and the delay will go to zero. If they do not go
to zero, the card adapter probably go into an equilibrium at a certain point. In
this equilibrium, the HCA will send packets with an inter-packet delay which
is just above or just under the threshold that causes new FECN flags to be
generated.

43

2 Basics

2.2.7 Memory management
An HCA’s access to a host’s main memory is managed and protected with three
primary objects: Memory Regions (MRs), Memory Windows (MWs), and Protection
Domains (PDs). The relationship between queue pairs and these objects is depicted
in Figure 2.18.

user agent (verbs)

protection_domain_Y

0x10

0x0F

0x0E

0x0D

0x0C

0x0B

0x0A

...

0x15

...

0x14

0x13

0x12

0x11

memory_region_C

reg. virtual address space

lkey / rkey required

memory_region_C

reg. virtual address space

lkey / rkey required

QP
3

QP3

send recv

managed by consumermanaged by OS

protection_domain_X

memory_region_A

reg. virtual address space

lkey / rkey required

memory_region_A

reg. virtual address space

lkey / rkey required

memory_region_B

reg. virtual address space

lkey / rkey required

memory_region_B

reg. virtual address space

lkey / rkey required

memory_window_1memory_window_1

QP
2

QP2

send recv

QP1
QP1

recv

11 22 33 44

send

Figure 2.18: The relationship between Queue Pairs (QPs), Memory Windows
(MWs), Memory Regions (MRs), and the host’s main memory.

Memory regions A memory region is a registered set of memory locations. A
process can register a memory region with a verb, which provides the HCA with
the virtual-to-physical mapping of that region. Furthermore, it returns a local key
(lkey) and remote key (rkey) to the calling process. Every time a work request
which has to access a virtual address within a local memory region is submitted to
a queue, the local key has to be provided within the work request. The region in
the main memory is pinned on registration, which means that the operating system
is prohibited from swapping that region out (subsection 2.4.1).

When a work requests tries to access a remote memory region on a target node,
e.g., with an RDMA read or write operation, the remote key of the memory region

44

2.2 The InfiniBand Architecture

on the target host has to be provided. Hence, before an RDMA operation can be
performed, the source node has to acquire the rkey of the remote memory region
it wants to access. This can, for example, be done with a regular send operation
which only requires local keys.

Protection domains Protection domains associate memory regions and queue
pairs and are specific to each HCA. During creation of memory regions and queue
pairs, both have to be associated with exactly one PD. Multiple memory regions
and queue pairs may be part of one protection domain.

A QP, which is associated with a certain PD, cannot access a memory region in
another PD. E.g., a QP in protection_domain_X in Figure 2.18 can access mem-
ory_region_A and memory_region_B, but not memory_region_C.

Memory windows If a reliable connection, unreliable connection, or a reliable
datagram is used, memory windows can be used for memory management. First,
memory windows are allocated, and then they are bound to a memory region. Al-
though allocation and deallocation of a memory window requires a system call—and
is thus time-consuming and not suitable for use in a datapath—binding a memory
window to (a subset of) a memory region is done through a work request submitted
to a send queue. A memory window can be bound to a memory region if both are
situated in the same protection domain, if local write access for the memory region
is enabled, and if the region was enabled for windowing at initialization.

The rkey that the MW returns on allocation is just a dummy key. Every time
the window is (re)bound to (a subset of) a memory region, the rkey is regenerated.
Memory windows can be thoroughly handy for dynamic management of remote
access of memory. A memory window with remote rights can be bound to a memory
region without remote rights, and enable remote access this way. Furthermore,
remote access can be granted and revoked dynamically without using system calls.

There are two types of memory windows: Type 1 and Type 2. Whereas the former
are addressed only through virtual addresses, the latter can be addressed through
either virtual addresses or zero based virtual addresses. More information on the
types is given in the first volume of the IBA specification [07].

Examples The list below provides some examples regarding memory regions, pro-
tection domains, and memory windows. The enumerations in the list correspond
with the numbers in Figure 2.18.

1. A send work request with a pointer to 0x0C was submitted. Since memory_re-
gion_A is bound to the address range this address lies in, the WR has to in-
clude memory_region_A’s local key. This is necessary so that the HCA will be
able to access the data when it starts processing the WR. A WR submitted to
QP1 can only access memory_region_A and memory_region_B—and thus only
memory with addresses between 0x0A and 0x11 in the current configuration—
since these regions share the protection domain with QP1.

45

2 Basics

Note that, although a memory window is bound to memory_region_A, QP1
can access the region directly by providing the local key.

2. This case is similar to case 1, but for QP2. Like QP1, QP2 can access all
memory regions in the same protection domain as long as the work request
that tries to access the memory region contains the right local key.

3. This case is similar to case 1 and 2, but for memory_region_C since QP3 resides
in protection_domain_Y. It is thus only possible to access memory locations
in the main memory in the address range from 0x12 to 0x15 with the current
configuration. To access other addresses, memory_region_C would have to be
rebound.

4. This case illustrates the reception of an RDMA write. Important note: If
a remote host writes into the local memory with an RDMA write, this will
not really consume a receive WR. It is completely processed by the HCA
without the QPs and CQs, and thus the OS and processes, even noticing this.
Displaying (4) like this was done for the sake of simplicity and clarity.
If a remote host wants to access 0x0A or 0x0B it can use the remote key of
memory_window_1 to access it. Note that remote access does not necessarily
have to be turned on for memory_region_A; only local write access is necessary.

2.2.8 Communication management
The Communication Manager (CM) provides protocols to establish, maintain, and
release channels. It is used for all service types which were introduced in subsec-
tion 2.2.1. In the following, a brief introduction on the establishment and termi-
nation of communication will be given. As aforementioned, the present work will
ignore special cases for the reliable datagram service type, since it is not supported
by the OFEDTM stack.

Since the communication manager is a general service, it makes use of GMPs for
communication (see “Management datagrams” in subsection 2.2.3 and the compo-
sition of MADs in Figure 2.9). The CM has a set of messages which is set in the
AttributeID of the common MAD header. A short summary of communication man-
agement related messages which are mandatory for IBA hosts that support RC, UC,
and RD can be found in Table 2.3. Conditionally required messages for IBA hosts
that support UD can be found in Table 2.4. Every message type needs different ad-
ditional information which is set in the MAD data field. The exact content of this
data for all message types can be found in the IBA specification [07].

As mentioned in subsection 2.2.2, the queue pair gets all necessary information
in order to reach a remote node as arguments while transitioning initialized → ready
to receive.

Communication establishment sequences There are various sequences of mes-
sages to establish or terminate a connection. Figure 2.19 introduces three commonly

46

2.2 The InfiniBand Architecture

Table 2.3: Required Communication Management messages, used for all service
types except Unreliable Datagram (UD).

CM message Description

REQ A request for communication is used to initiate the communica-
tion establishment sequence. The node that sends this message
provides the remote host with its queue pair number and its
GID and/or LID.

MRA A message receipt acknowledgment is used as a response to a
REQ, a LAP (Load Alternate Path, an optional communication
message), or a REP. It is used if the node which receives one
of the formerly mentioned messages does not expect to be able
to respond within the specified time-out. With this mechanism,
unnecessary time-outs are prevented.

REJ By replying with reject to a REQ, a node indicates that it will
not continue with the communication establishment sequence.
The reason can be found, i.a., in the data field of the REJ.

REP A node sends a reply to REQ if it wants to accept a previously
received REP and all its parameters.

RTU A node replies with ready to use after it received a REP to
indicate that transmission can be started.

DREQ A request for communication release is sent if a node wants to
disconnect a queue pair.

DREP A response to DREQ is used to acknowledge that a DREQ is
received.

Table 2.4: Conditionally required Communication Management messages, used to
acquire Unreliable Datagram (UD) addressing information.

CM message Description

SIDR_REQ The Service ID Resolution Request is used to request UD ad-
dressing information from a remote node for a certain service
ID.

SIDR_REP The Service ID Resolution Response is a response to the
SIDR_REQ and contains all information to communicate with
the entity that was specified as service ID in the request mes-
sage.

47

2 Basics

used sequences. In all cases, the communication is established between an active
client (A) and a passive server (B). It is also possible to establish communication
between two active clients. If two active clients send a REQ, they will compare their
GUID (or, if both clients share a GUID, their QPN), and the client with the smaller
GUID (or QPN) will get assigned the passive role. A client can make its reply to a
communication request conditional, e.g., rejecting the connection if it gets assigned
the passive role.

AA
active

BB
passive

tt

REQ

REP

RTUA may
send

B may
send

(a) Communication estab-
lishment sequence for
RC, UC, and RD.

AA
active

BB
passive

tt

DREQ

DREP

(b) Communication release
sequence for RC, UC,
and RD.

AA
active

BB
passive

tt

SIDR_REQ

SIDR_REP

(c) Service ID Request for
UD.

Figure 2.19: Several Communication Management sequences. All depicted se-
quences take place between an active and a passive IBA host.

Communication establishment Figure 2.19a depicts the communication estab-
lishment sequence for connected service types and for reliable datagram. First, the
active host A sends a request for communication (REQ). If B wants to accept the
communication it replies with reply to REQ (REP). If it does not want to accept
the communication request, it replies with reject (REJ). If it is not able to reply
within the time-out that is specified in the received REQ, it answers with message
receipt acknowledgment (MRA).

As soon as A has received the REP, it sends a ready to use (RTU) to indicate
that transmission can start.

Communication release Figure 2.19b depicts the communication release sequence
for RC, UC, and RD. The active host takes the initiative and sends a request
for communication release (DREQ). The passive node acknowledges this with a

48

2.3 OpenFabrics software libraries

response to DREQ (DREP). These messages travel out of band, so if there are still
operations in progress, it cannot be predicted how they will be completed.

Service ID request Figure 2.19c illustrates how A sends a Service ID Resolution
Request (SIDR_REQ) in order to receive all necessary information from B to com-
municate over unreliable datagram. This information is sent from B to A over a
Service ID Resolution Response (SIDR_REP).

2.3 OpenFabrics software libraries
Although the IBA specification [07] defines the InfiniBand Architecture and abstract
characteristics of functions which should be included, it does not define a complete
Application Programming Interface (API). Initially, the IBTA planned to leave the
exact API implementation open to the several vendors. However, in 2004, the non-
profit OpenIB Alliance (since 2005: OpenFabrics Alliance) was founded and released
the OpenFabrics Enterprise Distribution (OFEDTM) under the GPL v2.0 or BSD
license [18g]. The OFEDTM stack includes, i.a., software drivers, core kernel-code,
and user-level interfaces (verbs) and is publicly available online.1, 2 Most InfiniBand
vendors fetch this code, sometimes make small enhancements and modifications,
and ship it with their hardware.

Figure 2.20 shows a simplified sketch of the OFEDTM stack. This illustration is
based on a depiction of Mellanox’ OFEDTM stack [18f]. In this picture, the SCSI
RDMA Protocol (SRP), all example applications, and all iWARP related stack
components are omitted. The present work will mainly concentrate on the interface
for the user space: the OpenFabrics user verbs (in the remainder of the present
work, simply referred to as verbs) and the RDMA CM.

When having read section 2.2, the names of most verbs are self-explanatory (e.g.,
ibv_create_qp(), ibv_alloc_pd(), ibv_modify_qp(), and ibv_poll_cq()). This
section will highlight some functions which often reoccur in the implementations in
chapter 4—i.e., the structure of work requests and how to submit them in subsec-
tion 2.3.1—or functions which are not or hardly defined in the IBA—i.e., event chan-
nels in subsection 2.3.2 and the RDMA communication manager in subsection 2.3.3.
A complete, alphabetically ordered list of all verbs with a brief description on them
can be found in appendix A.

2.3.1 Submitting work requests to queues
Scatter/gather elements Submitting work requests is a crucial part of the data-
path and enables processes to commission data transfers to the host channel adapter
without kernel intervention. As presented in subsection 2.2.2, both send and receive
work queue elements contain one or several memory location(s), which the HCA will

1https://github.com/linux-rdma/rdma-core
2https://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma.git

49

https://github.com/linux-rdma/rdma-core
https://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma.git

2 Basics

 Infiniband HCA hardware

provider adapter drivers

OpenFabrics kernel verbs

SA client MAD SMA CM

CMA

netdevice

IP

TCP UDP ICMP

socket layer
OpenFabrics user verbs / RDMA CM

d
a
t
a

c
h
a
n
n
e
l

(
k
e
r
n
e
l

b
y
p
a
s
s
)

k
e
r
n
e
l

s
p
a
c
e

u
s
e
r

s
p
a
c
e

mid-layer

upper
layer

protool IPoIB

t
r
a
d
i
t
i
o
n
a
l

n
e
t
w
o
r
k

i
n
t
e
r
f
a
c
e

user API

c
o
m
m
a
n
d

c
h
a
n
n
e
l

application
level

diag.
tools

processprocess process
open
SM

user level
MAD API

Figure 2.20: A simplified overview of the OFEDTM stack.

use to read data from, or write data to. Work requests include a pointer to a list of at
least one scatter/gather element (sge). This is a simple structure that includes the
memory address, the length, and, in order for the HCA to be able to actually ac-
cess the memory location, the local key. The structure of a scatter/gather element
is displayed in Listing 2.1.

1 struct ibv_sge {
2 uint64_t addr;
3 uint32_t length ;
4 uint32_t lkey;
5 };

Listing 2.1: The composition of struct ibv_sge.

Receive work requests A receive work request, which is used to inform the HCA
about the main memory location where received data should be written to, is a rather

50

2.3 OpenFabrics software libraries

simple structure as well. The structure, which is shown in Listing 2.2, includes a
pointer to the first element of a scatter/gather list (*sg_list) and an integer to
define the number of elements in the list (num_sge). Passing a list with several
memory locations can be handy if data should be written to different locations,
rather than to one big coherent memory block. The *next pointer can be used
to link a list of receive work requests together. This is helpful if a process first
prepares all work requests, and subsequently wants to call ibv_post_recv() just
once, on the first work request in the list. The HCA will automatically retrieve all
following WRs. The unsigned integer wr_id is optional and can be used to identify
the resulting completion queue entry.

1 struct ibv_recv_wr {
2 uint64_t wr_id ;
3 struct ibv_recv_wr *next;
4 struct ibv_sge * sg_list ;
5 int num_sge ;
6 };

Listing 2.2: The composition of struct ibv_recv_wr.

Send work requests A send work request, displayed in Listing 2.3, is a larger
structure and tells a lot about the several options (some) InfiniBand adapters offer.
The first four elements are identical to those of the ibv_recv_wr C structure. They
provide a way to match a CQE with a WR, offer the possibility to create a list
of WRs, and enable the user to specify a pointer to and the length of a list of
scatter/gather elements.

The fifth element, opcode, defines the operation which is used to send the message.
Which operations are allowed depends on the type of the queue pair the present
work request will be sent to; Table 2.5 shows all possible operations together with
the service types they are allowed in. send_flags can be set to a bitmap of the
following flags:

• IBV_SEND_FENCE: The WR will not be processed until all previous RDMA read
and atomic WRs in the send queue have been completed.

• IBV_SEND_SIGNALED: If a QP is created with sq_sig_all=1, completion queue
entries will be generated for every work request that has been submitted to the
SQ. Otherwise, CQEs will only be generated for WRs with this flag explicitly
set.
This only applies to the send queue. Signaling cannot be turned off for the
receive queue.

• IBV_SEND_SOLICITED: This flag must be set if the remote node is waiting for
an event (subsection 2.3.2), rather than actively polling the completion queue.

51

2 Basics

This flag is valid for send and RDMA write operations and will wake up the
remote node if it is waiting for a solicited message.

• IBV_SEND_INLINE: If this flag is set, the data to which the scatter/gather
element points is directly copied into the WQE by the CPU. That means that
the HCA does not need to independently copy the data from the host’s main
memory to its own internal buffers. Consequently, this saves an additional
main memory access operation and, since the HCA’s DMA engine will not
access the main memory, the local key that is defined in the scatter/gather
element will not be checked. Sending data inline is not defined in the original
IBA and thus not all RDMA devices support it. Before sending a message
inline, the maximum supported inline size has to be checked by querying the
QP attributes using ibv_query_qp().
This flag is frequently used in the remainder of the present work because it
offers a potential latency decrease and the buffers can immediately be released
for re-use after the send WR got submitted.

Table 2.5: Supported operations with various service types. Although Reliable Data-
gram (RD) theoretically supports all operations, it is not supported by
the OFEDTM stack.

Operation UD UC RC RD

send 3 3 3

send with immediate 3 3 3

RDMA write 3 3

RDMA write with immediate 3 3

RDMA read 3

atomic compare & swap 3

atomic fetch & add 3

The 32-bit imm_data variable is used with operations that send data with im-
mediate (Table 2.5). The data will be sent in the data packet’s ImmDt field (Ta-
ble 2.2). Besides sending 32 bit of data to the remote’s completion queue—for ex-
ample, as identifier—the immediate data field can also be used for notification of
RDMA writes. Usually, the remote host does not know whether an RDMA write
message is written to its memory and thus does also not know when it is finished.
Since RDMA write with immediate consumes a receive WQE and subsequently gen-
erates a CQE on the receive side, this operation can be used as a way to synchronize
and thus make the receiving side aware of the received data.

The fields rdma, atomic, and ud are part of a union, hence, mutually exclusive.
The first two structs are used together with the operations with the same name

52

2.3 OpenFabrics software libraries

from Table 2.5. The content of the rdma C structure defines the remote address and
the remote key, which first have to be acquired through a normal send operation.
The atomic C structure includes the remote address and key, but also a compare
and swap operand. The ud structure is used for unreliable datagram. As mentioned
before, QPs in UD mode are not connected and the consumer has to explicitly define
the Address Handle (AH) of the remote QP in every WR. The AH is included in the
WR through the *ah pointer, and can, for example, be acquired with the RDMA
communication manager which is presented in subsection 2.3.3. The remote_qpn
and remote_qkey variables are used for the queue pair number and queue pair key
of the remote QP, respectively.

1 struct ibv_send_wr {
2 uint64_t wr_id ;
3 struct ibv_send_wr *next;
4 struct ibv_sge * sg_list ;
5 int num_sge ;
6 enum ibv_wr_opcode opcode ;
7 int send_flags ;
8 uint32_t imm_data ;
9 union {

10 struct {
11 uint64_t remote_addr ;
12 uint32_t rkey;
13 } rdma;
14 struct {
15 uint64_t remote_addr ;
16 uint64_t compare_add ;
17 uint64_t swap;
18 uint32_t rkey;
19 } atomic ;
20 struct {
21 struct ibv_ah *ah;
22 uint32_t remote_qpn ;
23 uint32_t remote_qkey ;
24 } ud;
25 } wr;
26 };

Listing 2.3: The composition of struct ibv_send_wr.

2.3.2 Event channels
Usually, completion queues (subsection 2.2.2) are checked for new entries by actively
polling them with ibv_poll_cq(); this is called busy polling. In order for this to
return a CQE as soon as one appears in the completion queue, polling has to be
done continuously. Although this is the fastest way to get to know if a new CQE

53

2 Basics

is available, it is very processor intensive: a CPU core with a thread which contin-
uously polls the completion queue will always be utilized 100 %. If minimal CPU
utilization outweighs performance, the OFEDTM user verbs collections offers Com-
pletion Channels (CCs). Here, an instance of the ibv_comp_channel C structure
is created with ibv_create_comp_channel() and is, on creation of the completion
queue, bound to that queue. After creation and every time after an event is gener-
ated, the completion queue has to be armed with ibv_req_notify_cq() in order
for it to notify the CC about new CQEs. To prevent races, events have to be ac-
knowledged using ibv_ack_cq_event(). Events do not have to be acknowledged
before new events can be received, but all events have to be acknowledged before the
completion queue is destroyed. Since this operation is relatively expensive, and since
it is possible to acknowledge several events with one call to ibv_ack_cq_event(),
acknowledgments should be done outside of the datapath.

The completion channel is realized with help of the Linux system call
read() [Ker10]. In default mode, read() tries to read a file descriptor fd and
blocks the process until it can return. Hence, as long as fd is not available, the op-
erating system hibernates the process, which enables it to schedule other processes
to the CPU. Because read() is used, the C structure of the channel, displayed in
Listing 2.4, is not much more than a mere file descriptor and a reference counter.
The blocking function which is used to wait for a channel is ibv_get_cq_event();
this function is a wrapper around read().

1 struct ibv_comp_channel {
2 struct ibv_context * context ;
3 int fd;
4 int refcnt ;
5 };

Listing 2.4: The composition of struct ibv_comp_channel.

Figure 2.21 depicts a comparison between busy polling and polling after an event
channel returns (event based polling). Figure 2.21a depicts busy polling, in which
ibv_poll_cq() is placed in an endless loop and continuously polls the completion
queue. In order to achieve low latencies—in other words in order to poll as often as
possible—this takes place in a separate thread. If ibv_poll_cq() returns a value
ret > 0, it was able to retrieve ret completion queue entries. These can now be
processed, for example, to release the buffers they are pointing to.

Event based polling, depicted in Figure 2.21b, is a little bit more complex. As
described above, first, a completion channel is created and is bound to the completion
queue during initialization. Then, the CQ must be informed with
ibv_req_notify_cq() about the fact that it should notify the completion channel
whenever a CQE arrives. After initialization, the completion channel will be read
with ibv_get_cq_event(). This happens again in a separate thread, this time be-
cause ibv_get_cq_event() will block the thread as long as no CQE arrives in the

54

2.3 OpenFabrics software libraries

completion queue. Whenever the function returns, it also returns a pointer to the
original CQ, which in turn can be used to busy poll the queue for limited amount
of time. However, there are two important differences to regular busy polling: when
the CQ is polled the first time, it is ensured that it will return at least one CQE.
Furthermore, after it has been polled the first time, the thread will continue to
poll it, but as soon as ibv_poll_cq() returns 0, the process will re-arm the CQ
and return to the blocking function. (Acknowledging with ibv_ack_cq_event() is
omitted from this example for the sake of simplicity; it has to be called at least once
before the completion queue is destroyed.)

CQ

ibv_create_cq();

while (1) {

 if (ibv_poll_cq())
 // use ret. CQEs

} // end of while(1)

ibv_w
c

ibv_w
cCQE

(a) The working principle of busy polling.

completion
channel

CQ

while (1) {
 ibv_get_cq_event();

ibv_create_cq();
ibv_req_notify_cq();

ibv_create_comp_channel();

 while (ibv_poll_cq()) {
 // use ret. CQEs
 }

*CQ

 ibv_req_notify_cq();

} // end of while (1)

ibv_w
c

ibv_w
cCQE

(b) The working principle of event based polling.

function in main-thread function in poll-thread

Figure 2.21: A comparison between busy polling and polling after an event channel
returns.

55

2 Basics

2.3.3 RDMA communication manager library
Because communication management can be quite cumbersome in the IBA, Annex
A11 of the IBA specification [07] proposes the RDMA IP connection manager, which
is implemented by the OpenFabrics Alliance. It offers a socket-like connection model
and encodes the connection 5-tuple (i.e., protocol, source and destination IP and
ports) into the private data of the CM REQ field (subsection 2.2.8).

RDMA CM over IPoIB The OFEDTM librdmacm3 library makes use of Internet
Protocol over InfiniBand (IPoIB) in its implementation of this communication man-
ager. IPoIB uses an unreliable datagram queue pair to drive communication because
this is the only mode which must be implemented by HCAs and because of its multi-
cast support [Kas15]. As can be seen in Figure 2.20, the Linux IPoIB driver enables
processes to access the InfiniBand HCA over the TCP/IP stack. On one hand, this
eradicates InfiniBand’s advantages like kernel bypass. On the other hand, this offers
an easy to set up interface to other InfiniBand nodes. All tools capable of work-
ing with the TCP/IP stack are also able to work with the TCP/IP stack on top
of the IPoIB driver. Because of this, the RDMA communication manager is able
to send Address Resolution Protocol (ARP) requests to other nodes which support
IPoIB on the InfiniBand network. The ARP response will—assuming that a node
with the requested IP address is present in the network—include a 20 B MAC ad-
dress. This address consists of—listed from the MSB to the LSB—1 reserved byte,
a 3-byte QPN field, and a 16-byte GID field. It is important to note that some ap-
plications or operating systems may have problems with the length of IPoIB’s MAC
addresses since an EUI-48–which has a length of 6 B instead of 20 B—is mostly used
in IEEE 802 [17].

Thus, after the IPoIB drivers are loaded and the interface is properly configured
using tools like ifconfig or ip, the RDMA CM is able to retrieve the queue pair
number and global identifier of a remote queue pair with the help of a socket like
construct.

Communication identifier & events The abovementioned socket like construct is
realized through so-called communication identifiers (struct rdma_cm_id). Unlike
conventional sockets, these identifiers must be bound to a local HCA before they can
be used. During creation of the identifier with rdma_create_id(), an event channel,
conceptually similar to the channels presented in subsection 2.3.2, can be bound
to the identifier. If such a channel is present, all results of operations (e.g., resolve
address, connect to remote QP) are reported asynchronously, otherwise the identifier
will operate synchronously. In the latter case, calls to functions that usually cause an
event on the channel will block until the operation completes. The former case
makes use of a function similar to ibv_get_cq_event(): rdma_get_cm_event()
also implements a blocking function that only returns when an event occurs on

3https://github.com/linux-rdma/rdma-core/blob/master/librdmacm

56

https://github.com/linux-rdma/rdma-core/blob/master/librdmacm

2.4 Real-time optimizations in Linux

the channel. This function can be used in a separate thread to monitor events
that occur on the identifier and to act on them. It is possible to switch between
synchronous and asynchronous mode.

Queue pairs can be allocated to an rdma_cm_id. Because the identifier keeps track
of the different communication events that occur, it will automatically transition the
QP through its different states; explicitly invoking ibv_modify_qp() is no longer
necessary.

2.4 Real-time optimizations in Linux
This section introduces optimizations that can be applied to systems running on the
Linux operating system. It expands upon techniques that were applied to the Linux
environment all benchmarks and VILLASnode instances were executed on and upon
memory optimizations of the code. Of course, the optimizations in this section are
a mere subset of all possibilities. The first subsection (2.4.1) elaborates on mem-
ory optimization, the second subsection (2.4.2) specifically on non-uniform memory
access, the third subsection (2.4.3) on CPU isolation and affinity, the fourth subsec-
tion (2.4.4) on interrupt affinity, and finally, the last subsection (2.4.5) elaborates
on the tuned daemon.

This section will not expand on the PREEMPT_RT patch [RH07] because it could
not be used together with the current OFEDTM stack. Possible opportunities of this
real-time optimization with regards to InfiniBand applications are further expanded
upon in section 7.1.

2.4.1 Memory optimizations
There are lots of factors that determine how efficiently memory is used: they can
be on a high level—e.g., the different techniques that are supported by the OS—but
also on a low level—e.g., by changing the order of certain memory accesses in the
actual algorithm. Exploring all these different techniques is beyond the scope of
the present work; rather, some techniques that are used in the benchmarks and
in the implementation of the InfiniBand node-type are discussed in this subsection.
The interested reader is referred to Drepper’s publication [Dre07], which provides a
comprehensive overview of methods that can be applied to optimize memory access
in Linux.

Hugepages Most modern operating systems—with Linux being no exception—
support demand-paging. In this method, every process has its own virtual memory
which appears to the process as a large contiguous block of memory. The OS maps
the physical addresses of the actual physical memory (or even of a disk) to virtual
addresses. This is done through a combination of software and the memory man-
agement unit (MMU) which is located in the CPU.

57

2 Basics

Memory is divided into pages. It is the smallest block of memory that can be
accessed in virtual memory. For most modern operating systems, the smallest page
size is 4 KiB; in a 64-bit architecture these 4 KiB can hold up to 512 words. If a
process tries to access data at a certain address in the virtual memory which is not
yet available, a page fault is generated. This exception is detected by the MMU,
which in turn tries to map the complete page from the physical memory (or from a
disk) into the virtual memory.

Page faults are quite expensive and it is beneficial for performance to cause as little
as possible page faults [Dre07]. One possible solution to achieve this is to increase the
size of the pages: Linux supports so-called hugepages. Although there are several
possible sizes for hugepages, on x86-64 architectures they are usually 2 MiB [18b].
Compared to the 512 words that can fit into a 4 KiB page, the hugepage can fit
262 144 words into one page, which is 512 times as much. Since more data can
be accessed with less page faults, this will increase performance; Drepper [Dre07]
reports performance gains up to 57 % (for a working set of 220 B).

Additionally, with hugepages, more memory can be mapped with a single entry in
the translation lookaside buffer (TLB). This buffer is part of the MMU and caches
the most recently used page table entries. If a page is present in the TLB (TLB
hit), resolution of a page in the physical memory is instantaneous. Otherwise (TLB
miss) up to four memory accesses in x86-64 architectures are required [Gan+16].
Since the TLB size is limited, larger pages result in the instantaneous resolution of
a larger range of addresses with the same size TLB.

Using hugepages is not an all-in-one solution; it has some disadvantages that have
to be considered. When page sizes are becoming bigger, it gets harder for the MMU
to find contiguous physical memory sectors of this size. This goes hand in hand
with external fragmentation of the memory. Furthermore, the size of hugepages
makes them more prone to internal fragmentation, which means that more memory
is allocated than is actually needed.

Alignment A memory address a is n-byte aligned when

a = C · n = C · 2i, with i ≥ 0, C ∈ Z. (2.12)

An n-byte aligned address needs to meet the sufficient condition that log2(n) LSBs
of the address are ‘0’.

Figure 2.22 shows a simple example for a 32-bit system with the three primitive
C data types from Listing 2.5. In Figure 2.22a the data is naturally aligned: the com-
piler added padding between the data types to ensure alignment to the memory word
boundaries. In the structure definition of Listing 2.5b, the compiler is compelled to
omit additional padding: the data types are not aligned to word boundaries. Note
that equation (2.12) holds in Figure 2.22a, but not in Figure 2.22b. Furthermore,
for Figure 2.22a, additional 1-bit characters could be placed at 0x0001, 0x0002,
0x0003, and 0x000A in this example. Additional 2-bit shorts could be placed at
0x0002 and 0x000A.

58

2.4 Real-time optimizations in Linux

1 struct a {
2 char c;
3 int i;
4 short s;
5 }

a: Struct with padding.

1 struct __attribute__ ((__packed__)) b {
2 char c;
3 int i;
4 short s;
5 }

b: Packed struct without padding.

Listing 2.5: Two C structures with an 1-bit character, a 4-bit integer, and a 2-bit
short.

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

...

0x0008

0x0007

0x000A

w
o
r
d

0

w
o
r
d

1

w
o
r
d

2

0x0009

(a) An aligned struct (Listing 2.5a).

0x0006

0x0005

0x0004

0x0003

0x0002

0x0001

0x0000

...

0x0008

0x0007

0x000A

w
o
r
d

0

w
o
r
d

1

w
o
r
d

2

0x0009

(b) An unaligned struct (Listing 2.5b).

character integer short unused

Figure 2.22: An example of an 1-bit character, a 4-bit integer, and a 2-bit short from
Listing 2.5 in memory with a word size of 32 B.

Similar to pages, a system can only access one whole word at a time. In Fig-
ure 2.22a, this translates to one memory access per data type. In Figure 2.22b,
however, this is no longer possible. To access the integer, the operating system
first has to access the word at address 0x0000 and then the word at address 0x0004.
Subsequently the value in the first word must be shifted one position and the value
in the second word three positions. Finally, both words have to be merged. These
additional operations cause additional delay when trying to access the memory.
Moreover, atomicity becomes more difficult to guarantee, since the OS needs to
access two memory locations to access one data type.

Alignment is not only relevant for memory words. Not aligning allocated memory
to cache lines significantly slows down memory access [Dre07]. Furthermore, due
to the way the TLB works, alignment can speed up resolution of addresses in the
physical memory.

59

2 Basics

Pinning memory The process of preventing the operating system from swapping
out (parts of) the virtual address space of a process is called pinning memory. It is
invoked by calling mlock() to prevent parts of the address space from being swapped
out, or mlockall() to prevent the complete address space from being swapped out.4

Explicitly pinning buffers that are allocated to use as source or sink for data by
an HCA is not necessary: when registering a memory region (subsection 2.2.7), the
registration process automatically pins the memory pages [15].

2.4.2 Non-uniform memory access
If different memory locations in the address space show different access times, this
is called non-uniform memory access (NUMA). A common example of a NUMA
system is a computer system with multiple CPU sockets and thus also multiple
system buses. Because a NUMA node is defined as memory with the same access
characteristics, here, this is the memory which is closest to the respective CPU.
Accessing memory on a remote NUMA node adds up to 50 percent to the latency
for a memory access [Lam13].

Figure 2.23 depicts an example with two NUMA nodes and the interconnect be-
tween them. It is beneficial for the performance of processes to access only memory
which is closest to the processor that executes the process. Furthermore, regarding
the InfiniBand applications later presented in the present work, it is beneficial to
run processes that need to access a certain HCA on the same NUMA node as the
HCA. An HCA is connected to the system bus through the Peripheral Component
Interconnect Express (PCI-e) bus, hence, access of memory in the same NUMA node
will be faster than access of memory on a remote NUMA node. Thus, in case of
Figure 2.23, if a process needs to access HCA 0, it should be scheduled on one or
more cores on processor 0 and should be restricted to memory locations of memory
0.

To set the memory policy of processes, tools like numactl,5 which are based on
the system call set_mempolicy(),6 can be used. These tools will not be further
elaborated upon here since the next subsection will introduce a more general tool
to constrain both CPU cores and NUMA nodes to processes.

2.4.3 CPU isolation & affinity
Isolcpus It is beneficial for the performance of a process if one or more CPU cores
(in the remainder of the present work often simply referred to as cores or CPUs) are
completely dedicated to its execution. Historically, the isolcpus7 kernel parameter
is used to exclude processor cores from the general balancing and scheduler algo-
rithms on symmetric multiprocessing architectures. With this exclusion, processes

4http://man7.org/linux/man-pages/man2/mlock.2.html
5http://man7.org/linux/man-pages/man8/numactl.8.html
6http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
7https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

60

http://man7.org/linux/man-pages/man2/mlock.2.html
http://man7.org/linux/man-pages/man8/numactl.8.html
http://man7.org/linux/man-pages/man2/set_mempolicy.2.html
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

2.4 Real-time optimizations in Linux

computer system

HCA 0HCA 0

NUMA node 0NUMA node 0

HCA 1HCA 1

interconnectinterconnect

NUMA node 1NUMA node 1

m
e
m
o
r
y

0

p
r
o
c
e
s
s
o
r

0

core

core

core m
e
m
o
r
y

1

p
r
o
c
e
s
s
o
r

1

core

core

core

HCA 0 HCA 1

additional delay

Figure 2.23: Two non-uniform memory access (NUMA) nodes with HCAs on the
respective PCI-e buses.

will only be moved to excluded cores if their affinity is explicitly set to these cores
with the system call sched_setaffinity() [Ker10]. The tool taskset,8 which relies
on the aforementioned system call, is often used to set the CPU affinity of running
processes or to set the affinity of new commands.

The major advantage of isolcpus is at the same time its biggest disadvantage:
the exclusion of cores from the scheduling algorithms causes threads, that are created
by a process, to always be executed on the same core as the process itself. Take
the example of busy polling: if a thread that must busy poll a completion queue is
created and is executed on the same core as the primary thread, this has an adverse
effect on the performance of the latter. So, it is desired to isolate CPU cores that are
dedicated to certain explicitly defined processes, but simultaneously enable efficient
scheduling of threads of these processes among the isolated cores.

Cpusets A possible solution to this problem is offered by cpusets [Der+04] which
uses the generic control group (cgroup) [MJL08] subsystem. If this mechanism is
used, requests by a task to include CPUs in its CPU affinity or requests to include
memory nodes are filtered through the task’s cpuset. That way, the scheduler will
not schedule a task on a core that is not in its cpuset.cpus list and not use memory
on NUMA nodes which are not in the cpuset.mems list.

Cpusets are managed through the cgroup virtual file system and each cpuset is
represented by a directory in this file system. The root cpuset is located under
/sys/fs/cgroup/cpuset and includes all memory nodes and CPU cores. A new
cpuset is generated by creating a directory within the root directory. Every newly
created directory automatically includes similar files to the root directory. These
files shall be used to write the cpuset’s configuration to (e.g., with echo9) or to

8http://man7.org/linux/man-pages/man1/taskset.1.html
9http://man7.org/linux/man-pages/man1/echo.1.html

61

http://man7.org/linux/man-pages/man1/taskset.1.html
http://man7.org/linux/man-pages/man1/echo.1.html

2 Basics

read the current configuration from (e.g., with cat10). The following settings are
available for every cpuset [Der+04]:

• cpuset.cpus: list of CPUs in that cpuset;
• cpuset.mems: list of memory nodes in that cpuset;
• cpuset.memory_migrate: if set, pages are moved to cpuset’s nodes;
• cpuset.cpu_exclusive: if set, cpu placement is exclusive;
• cpuset.mem_exclusive: if set, memory placement is exclusive;
• cpuset.mem_hardwall: if set, memory allocation is hardwalled;
• cpuset.memory_pressure: measure of how much paging pressure in cpuset;
• cpuset.memory_pressure_enabled11: if set, memory pressure is computed;
• cpuset.memory_spread_page: if set, page cache is spread evenly on nodes;
• cpuset.memory_spread_slab: if set, slab cache is spread evenly on nodes;
• cpuset.sched_load_balance: if set, load is balanced among CPUs;
• cpuset.sched_relax_domain_level: searching range when migrating tasks.

Once all desired cpusets are created and everything is set up by writing settings
to the abovementioned files, tasks can be assigned by writing their process identifier
(PID) to /sys/fs/cgroup/cpuset/<name_cpuset>/tasks.

Cpuset tool Since the process of manually writing tasks to the tasks-file can be
quite cumbersome, there are several tools and mechanisms to manage which pro-
cesses are bound to which cgroups.12 A rudimentary tool that is used in the present
work is called cpuset.13 It was developed by Alex Tsariounov and is a Python wrap-
per around the file system operations to manage cpusets. The following examples
on how to create cpusets, how to move threads between cpusets, and how to execute
applications in a cpuset are all based on this tool. However, the exact same settings
can also be achieved by writing values manually to the virtual file system.

Listing 2.6 shows how to create different subsets. (Here, and in the remainder of
the present work, the octothorpe indicates that the commands must be executed
by a superuser. A dollar sign indicates that the command can be executed by a
normal user.) In this example, an arbitrary machine with 24 cores and two NUMA
nodes (subsection 2.4.2) is assumed. The first cpuset, system, may use 16 of these
cores exclusively and may use memory in both NUMA nodes. This will become
the default cpuset for non-time-critical applications. The second and third cpuset,
called real-time-0 and real-time-1 in this example, may use four cores each. These
10http://man7.org/linux/man-pages/man1/cat.1.html
11exclusive to root cpuset
12Although the libcgroup package was used in the past, systemd is nowadays the preferred method

for managing control groups.
13https://github.com/lpechacek/cpuset

62

http://man7.org/linux/man-pages/man1/cat.1.html
https://github.com/lpechacek/cpuset

2.4 Real-time optimizations in Linux

are exclusively reserved for time-critical applications. In this example, it is assumed
that the CPUs 16, 18, 20, and 22 reside in NUMA node 0 and the CPUs 17, 19,
21, and 23 in NUMA node 1; the real-time cpusets are thus constrained to their
respective nodes.

1 # cset set -c 0-15 -s system --cpu_exclusive
2 # cset set -c 16 ,18 ,20 ,22 -s real -time -0 --cpu_exclusive --mem =0
3 # cset set -c 17 ,19 ,21 ,23 -s real -time -1 --cpu_exclusive --mem =1

Listing 2.6: Creating cpusets for system tasks and real-time tasks.

The exclusiveness of a CPU to cpuset only applies to its siblings; tasks in the
cpuset’s parent may still use the CPU. Therefore, Listing 2.7 shows how to move
threads and movable kernel threads from the root cpuset to the newly created system
cpuset. Now, the execution of these tasks and of all their children exclusively takes
place on CPUs that range from 0 to 15.

1 # cset proc --move -f root -t system --kthread --thread --force

Listing 2.7: Moving all tasks, threads, and moveable kernel threads to system.

This leaves the two real-time cpusets exclusively for high-priority applications.
Listing 2.8 shows how new applications with their arguments can be started within
the real-time cpusets.

To ensure that the load is balanced among the CPUs in a cpuset—a feature that
is not supported by isolcpus—cpuset.sched_load_balance must be ‘1’. It is
not necessary to explicitly set this value since its default value is already ‘1’.

1 # cset proc --set=real -time -0 --exec ./< application > -- <args >
2 # cset proc --set=real -time -1 --exec ./< application > -- <args >

Listing 2.8: Execute <application> with the arguments <args> in the real-time
cpusets.

Non-movable kernel threads Kernel threads are background operations performed
by the kernel. They do not have an address space, are created on system boot,
and can only be created by other kernel threads [Lov10]. Although some of them
may be moved from one CPU to another, this is not generally the case. Some kernel
threads are pinned to a CPU on creation. Although it is not possible to completely
exclude kernel threads from getting pinned to cores which will be shielded, there is
a workaround which might minimize this chance.

63

2 Basics

By setting the kernel parameter maxcpus14 to a number smaller than the total
amount of CPU cores in the system, some cores will not be brought up during
bootup. Hence, these processors will not be used to schedule kernel threads. Later,
when all movable kernel threads are moved to a shielded cpuset, the remaining CPUs
can be activated with the command from Listing 2.9. Then, these CPUs can be
added to an exclusive cpuset. Although it is inevitable that some necessary threads
will be spawned on these cores once they are brought up, most of the non-movable
kernel threads cannot move from a processor that was available during bootup to a
processor that was activated after bootup.

1 # echo 1 > /sys/ devices / system /cpu/<cpuX >/ online

Listing 2.9: Bring up a CPU <cpuX> which was disabled during bootup.

2.4.4 Interrupt affinity
In most computer systems, hardware interrupts provide a mechanism for I/O hard-
ware to notify the CPU when it has finished the work it was assigned. When an
I/O device wants to inform the CPU, it asserts a signal on the bus line it has been
assigned to. The signal is then detected by the interrupt controller which decides
if the targeted CPU core is busy. If this is not the case, the interrupt is imme-
diately forwarded to the CPU, which in turn ceases its current activity to handle
the interrupt. If the CPU is busy, for example, because another interrupt with a
higher priority is being processed, the controller ignores the interrupt for the mo-
ment and the device keeps asserting a signal to the line until the CPU is not busy
anymore [TB14].

Hence, if a CPU is busy performing time-critical operations—e.g., busy polling
(Figure 2.21a)—too many interrupts are detrimental for the performance. Thus, it
can be advantageous to re-route interrupts to CPUs that do not perform time-critical
applications.

Listing 2.10 shows how to obtain the interrupt request (IRQ) affinity of a cer-
tain interrupt request <irqX>. The value smp_affinity is a bitmap, which means
that the indices that are set represent the allowed CPUs [Bow+09]. E.g., when
smp_affinity for a certain IRQ is ‘10’, it means that CPU 1 is allowed; if the
affinity is ‘11’, it means that CPU 1 and 0 are allowed.

1 $ cat /proc/irq/<irqX >/ smp_affinity

Listing 2.10: Get the IRQ affinity of interrupt <irqX>.

14https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

64

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

2.4 Real-time optimizations in Linux

Listing 2.11 demonstrates how the IRQ affinity of a certain interrupt request can
be set. In the case of Listing 2.11, it is set to CPU 0–15, which corresponds to the
system cpuset from the previous paragraph. <irqX> will no longer bother the CPUs
16–23. To re-route all IRQs, a script (e.g., in Bash) that loops through /proc/irq
can be used.

1 # echo FFFF > /proc/irq/<irqX >/ smp_affinity

Listing 2.11: Set the IRQ affinity of interrupt <irqX> to CPU 0–15.

2.4.5 Tuned daemon
Red Hat based systems support the tuned daemon,15 which uses udev [Kro03] to
monitor devices and, on the basis of its findings, adjusts system settings to increase
performance according to a selected profile. The daemon consists of two types of
plugins: monitoring and tuning plugins. The former can, at the moment of writing
the present work, monitor the disk load, network load, and CPU load. The tuning
plugins currently supported are: cpu, eepc_she, net, sysctl, usb, vm, audio, disk,
mounts, script, sysfs, and video.

Although it is possible to define custom profiles, tuned offers a wide range of pre-
defined profiles, of which latency-performance is eminently suitable for low-latency
applications. This profile does, among others, disable power saving mechanisms, set
the CPU governor to performance, and lock the CPU to a low C-state. A com-
plete overview of all settings in the latency-performance profile can be found in
appendix B.

Management of different tuning profiles can be done with the command line tool
tuned-adm.16

15https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_
guide-tuned

16https://linux.die.net/man/1/tuned-adm

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://linux.die.net/man/1/tuned-adm

3 Architecture
The first section of this chapter (3.1) explains the concept and internals of a VIL-
LASnode instance. In the second section (3.2), a brief introduction on the configu-
ration of node-type instances is given. Then, in section 3.3, 3.4, and 3.5, the adap-
tions that had to be made to the interface of node-types, the memory management
of VILLASnode, and the finite-state machine of nodes are explained, respectively.

3.1 Concept
The functioning principles and general structure of VILLASframework, of which
VILLASnode is a sub-project, were already presented in subsection 1.1.2. This
section solely focuses on the structure of VILLASnode.

Table 1.1 presented the different node-types that VILLASnode supported at the
time of writing the present work. One VILLASnode instance—in the remainder of
the present work often referred to as super-node—may have several nodes which act
as source and/or sink of simulation data. A node is defined as an instance of a
node-type. Accordingly, a super-node can serve as a gateway for simulation data.
Node-types can roughly be divided into three categories:

• internal node-types, which enable communication with node-types on the same
host (e.g., writing data to a file descriptor through a file node);

• server-server node-types, which enable communication with nodes on different
hosts (e.g., communicating with a socket node on a remote host);

• simulator-server node-types, which enable communication with simulators (e.g.,
acquiring data from an OPAL-RT simulator).

(In the remainder of this work, names of node-types and nodes are written in a
cursive font, for example, file node, socket node, or InfiniBand node-type.)

Within a super-node, so called paths connect different nodes. A path starts at a
node from which it acquires data. Immediately after data is obtained, it is optionally
sent through a hook, which can be seen as an extension to manipulate the data (e.g.,
to filter or transform it). Then, the data is written into a FIFO (also called: queue),
which holds it until it can be passed on. Subsequently, the data is sent through a
register, which can multiplex and mask it. Before the data is placed into the output
queue and right before the sending node obtains it, it can be manipulated by more
hooks. Finally, if the output node is ready, the data is moved from the output queue
to the output node, which then sends it to a given destination node.

67

3 Architecture

Data is transmitted in samples, which store the simulation data for a given point
in time, send and receive timestamps, and a sequence number. The sample structure
is deliberately kept simple because it is the smallest common denominator of all
supported simulators.

r1 h2 h3 socket

qi,2
qi,2

qi,4
qi,4

r2qo,2
qo,2

qi,1
qi,1

r3

qo,4
qo,4

qi,5
qi,5file

qo,3
qo,3

IB

mqttqi,3
qi,3

qo,1
qo,1

h3

opal

path 3path 2path 1

n1

n2 n5

n4

n3

h5

h1

h6

h4

Figure 3.1: The internal VILLASnode architecture [Vog+17]. Depicted is one VIL-
LASnode instance (super-node) that includes three paths, which connect
five node-type instances (nodes) with each other.

Figure 3.1 depicts the internal connections of an example super-node. This VIL-
LASnode instance includes five node-type instances: opal (n1), file (n2), socket (n3),
mqtt (n4), and a yet to be implemented InfiniBand (n5) node. On receive, data from
the opal node n1 is modified by hook h1 before it is placed in queue qi,1. Path
1 continues through register r1, hook h2, and hook h3, before it enters the out-
put queue qo,1. Before the socket node n3 sends the data from the queue to another
socket node, it is modified one last time by hook h4.

Path 2 connects a socket node (n3), an mqtt node (n4), and an InfiniBand node
(n5) with an opal node n1. In this path, the register r2 determines the forwarding
conditions for qi,2, qi,3, and qi,4; it could, for example, depending on the data available

68

3.2 Configuration of nodes

in the queues, mask them. Before the data is placed in the output queue qo,2 and right
before the opal node sends the data, it is modified by hook h5 and h6, respectively.

Path 3 connects a file node n2, which reads data from a local file, with an mqtt
node n4 and InfiniBand node n5.

3.2 Configuration of nodes

Listing 3.1 shows an example of a stripped down VILLASnode configuration file. The
first part of the configuration consists of a list of nodes to be initialized (comparable
with n1...5 in Figure 3.1). In this example, an instance of a file node-type (node_1)
and an instance of an InfiniBand node-type (node_2) would be instantiated. Besides
the type, a user can specify a range of settings for every node. These can be divided
into global settings for the complete instance, settings only for the input part of the
node, and settings only for the output part. The supported settings for every node-
type can be found on the VILLASframework documentation pages.1

The paths section describes how nodes are connected within the super-node (com-
pare with path 1, path 2, and path 3 in Figure 3.1). In this case, there is a path
between node_1 and node_2. This means that data is read from a file, which would
be specified in the in-section of node_1, and then placed in a buffer in the super-
node. Then, after it is sent through possible hooks—which are not defined in this
configuration file—it is copied to the memory that is allocated as output buffer for
the InfiniBand node. The super-node then sends these samples to the write-function
of that node, which in turn sends the samples to a remote node as specified in its
out-section.

3.3 Interface of node-types

To ensure interoperability between different node-types and VILLASnode, the VIL-
LASframework specification defines an interface to use between the super-node and
node-types. It is realized as a fixed set of functions with a given set of parameters
that every node-type can implement. These functions have to be registered with the
framework by passing it the pointers of the respective functions. Examples of func-
tions to be implemented are start() and stop(), as well as read() and write().
Since their parameters had to be changed to efficiently support an InfiniBand node-
type, this section will expand upon the latter.

Not every function is mandatory; some functions will simply be ignored if they
are not implemented. A complete list of all functions a node-type should implement,
together with a brief description, is presented in appendix C.

1https://villas.fein-aachen.org/doc/node-types.html

69

https://villas.fein-aachen.org/doc/node-types.html

3 Architecture

1 nodes = {
2 node_1 = {
3 type = "file",
4
5 // Global settings for node_1
6
7 in = {
8 // Settings for node input , e.g., file to read from
9 }

10 },
11 node_2 = {
12 type = " infiniband ",
13
14 // Global settings for node
15
16 in = {
17 // Settings for node input , e.g., address of local
18 // InfiniBand HCA to use
19 },
20
21 out = {
22 // Settings for node output , e.g., remote InfiniBand
23 // node to write to
24 }
25 }
26 },
27
28 paths = (
29 {
30 in = " node_1 ",
31 out = " node_2 "
32 }
33)

Listing 3.1: Structure of the configuration file of a file node and an InfiniBand node
with a path connecting them.

3.3.1 Original implementation of the read- and write-function

Listing 3.2 shows the variables which were originally used in the node_type C struc-
ture (appendix D.3) to save the function pointers to the read- and write-function.
Since this listing shows the initial parameters, it helps to understand the working
principles of both functions and their weaknesses.

For both functions, *n is a C structure that holds information about the node-
type instance. It contains, among others, information about the state, the number
of generated or received samples, the configuration of the node and a field for node-
type specific virtual data. The node structure is displayed in appendix D.2; the
present work will not expand further upon this struct.

70

3.3 Interface of node-types

1 int (* read)(struct node *n, struct sample *smps [], unsigned cnt);
2 int (* write)(struct node *n, struct sample *smps [], unsigned cnt);

Listing 3.2: Original parameters of read() and write()

Read-function The working principle of the read-function is displayed in Fig-
ure 3.2. The _read() box represents the function to which the (*read) pointer
(line 1 in Listing 3.2) of a given node-type points and is often simply referred to as
read-function in the remainder of the present work. The box thus depicts a part of
the interface between the super-node and the node.

In order to retrieve data from a node, the super-node starts by allocating cnt ≥ 1
empty samples. A sample contains fields for, i.a., an origin timestamp, a receive
timestamp, a sequence number, a reference counter, and a field to save the actual
signal. The signal can contain unsigned 64-bit integers, 64-bit floating-point num-
bers, booleans, or complex numbers. Appendix D.1 presents the sample C struc-
ture. Since this structure contains some host specific information, it contains more
data than will actually be sent.

After samples have been allocated, their reference counter (refcnt) is increased
by one. Samples in VILLASnode cannot be destroyed unless the reference counter
is 1 when the release-function is called. When refcnt > 1, other instances within
VILLASnode still rely on the sample; calling the release-function on such a sample
will cause the reference counter to be decremented by 1. In the remainder of the
present work, releasing a sample and decreasing the reference counter of a sample
by one is used interchangeably.

After memory to hold the samples has been allocated, a pointer to the first sample
(*smps[]) and the total number of allocated samples (cnt) is passed to the node by
calling the read-function (Figure 3.2a). The node then tries to receive a maximum
of cnt values to subsequently copy them to the allocated memory.

The return of the read-function is depicted in Figure 3.2b. After the receive
module, which is blackboxed here, has filled up ret ≤ cnt samples, it lets the read-
function return with ret. The super-node then processes ret samples (e.g., sending
them through several hooks, before sending them to another node). Finally, all
cnt—thus not only ret—samples are released. So, after a read cycle, the reference
counter of all samples is decreased by 1, and in that way the samples are usually
destroyed.

Write-function The write-function works in a similar fashion as the read-function
and has identical parameters (line 2 in Listing 3.2). The working principle of this
function is depicted in Figure 3.3. When a super-node’s path needs to write data
to a node, it calls the write-function (Figure 3.3a) and passes the total number of
samples and the pointer to the first sample as arguments.

When the write-function is called, the node starts processing the samples by
copying cnt samples to its send module and instructing it to send the data. The

71

3 Architecture

super-node

node
_read()

smps[]

cnt*smps[]

*smps[]
receive
module

copy max cnt
samples to *smps[]

allocate cnt
samples and set

refcnt = 1

cnt

c
a
l
l

r
e
a
d

(a) Invoking the read-function.

super-node

node
_read()

smps[]

*smps[]

receive
module

return number of
received samples

process
ret ≤ cnt
samples

decrease refcnt
of cnt samples

cnt

ret

r
e
t
u
r
n

r
e
a
d

copy

(b) Return of the read-function.

empty buffers buffers with received data

Figure 3.2: A depiction of the working principle of the read-function in VILLASnode.
This function is part of the interface between a super-node and a node.

send module does not return until all samples are copied to the send module, and in
case of many nodes, not until the data is successfully sent. When the send module
is done, depicted in Figure 3.3b, it lets the write-function return with the number
of samples that have been successfully sent. Ideally, the returned value ret is equal
to the number of passed samples cnt. If this is not the case, the super-node will
detect this and act upon a possible error. In all cases, the reference counter of all
cnt samples is decremented by 1.

3.3.2 Requirements for the read- and write-function of an
InfiniBand node

As discussed in the previous section, the reference counters of all samples that have
been sent into the read- or write-functions are decreased after the functions return.
For nodes with either a receive module that has a local buffer or with a send module
which does not return until it has made a copy of the data or actually sent the
data, this approach works exactly as intended. But, as soon as the modules are
implemented by an architecture which is based on the VIA—in this particular case

72

3.3 Interface of node-types

super-node

node
_write()

smps[]

cnt*smps[]

*smps[]
send
module

send cnt samples
from *smps[]

offer cnt samples
to send with
refcnt ≥ 1

cnt

c
a
l
l

w
r
i
t
e

copy

(a) Invoking the write-function.

super-node

node
_write()

smps[]

*smps[]

send
module

return number of
sent samples

ret ≤ cnt?

handle problem!

decrease refcnt
of cnt samples

cnt

r
e
t
u
r
n

w
r
i
t
e

(b) Return of the write-function.

buffers with data to be sent

Figure 3.3: A depiction of the working principle of the write-function in VIL-
LASnode. This function is part of the interface between a super-node
and a node.

the IBA—the implementation causes problems. To adhere to the zero-copy principle
of the VIA, data should not be copied from the super-node’s buffer to a local buffer
or the other way around. Rather, a pointer to, and the length of, a memory location
should be passed to the network adapter, which then independently copies the data
from the host’s memory to its local buffers or the other way around.

In the following, the ideal situation for a read and write operation for the Infini-
Band Architecture is presented. Although this approach is specifically for the IBA,
it can relatively easily be translated to other VIAs. After the desired approach has
been discussed, the next subsection will discuss the shortcomings of the parameters
in Listing 3.2, that obstruct the implementation of this approach.

Read-function Figure 3.4 depicts a super-node that reads from a node-type in-
stance whose communication is based on the IBA. The receive module in this figure
relies on the receive queue of an InfiniBand QP. As explained in subsection 2.2.2,
a queue pair cannot receive data unless its RQ holds receive WQEs. Hence, work
requests that point to buffers of the super-node have to be submitted.

73

3 Architecture

super-node

node

smps[]

cnt*smps[]

*smps[]

receive module

place max cnt
samples in RQ

allocate cnt
samples and set

refcnt = 1

cnt

c
a
l
l

r
e
a
d

RQ CQ

_read()

(a) Invoking the read-function.

super-node

node

_read()

smps[]

poll CQ, return
number of CQEs

process
ret ≤ cnt
samples

decrease refcnt of
samples that are
not in any queue

ret

r
e
t
u
r
n

r
e
a
d

receive module

RQ CQ
*smps[]

replace original pointers of
samples that may not be
released (i.e., that are sub-
mitted to the RQ) by addresses
in wr_id of the CQE

amount of
smps to
release

(b) Return of the read-function.

pointers to empty buffers pointers to buffers that
are filled by HCA

Figure 3.4: A depiction of the working principle of the read-function in an InfiniBand
node. The RQ is part of a complete QP, but the SQ is omitted for the
sake of simplicity.

An important requirement for this node-type was that it should be compatible
with the original node-type interface; or at least that the changes would be minimal.
Hence, in order to acquire pointers to samples from the super-node, the *smps[]
parameter from the read-function is used. Like the super-node in Figure 3.2a, the
super-node in Figure 3.4a starts by allocating cnt ≥ 1 empty samples, increasing
their reference counters, and passing their pointers to the node’s read-function. The
node, in turn, takes the addresses of the samples, wraps them up in scatter/gather
elements, places them in work requests, and submits them to the RQ. Now, when the
HCA receives a message, it will write the data directly into the allocated memory
within the super-node. In this way, an additional copy between the node and the
super-node is avoided.

74

3.3 Interface of node-types

Since the receive module of an InfiniBand node does not copy data to the passed
samples, the returning of function in Figure 3.4b works fundamentally different from
the returning of the function in Figure 3.2b. If there are no CQEs in the completion
queue, thus if the HCA did not receive any data, the return value ret of the node
shall be 0. In that way, the super-node knows that the set of previously allocated
smps[] does not hold any data. The reference counters of none of the buffers shall
be decreased since they are all submitted to the RQ and the HCA will thus write
data to them.

If CQEs are available, pointers to samples which are submitted to the RQ (light
gray in Figure 3.4) are replaced by the pointers to the buffers that are filled by the
HCA (dark gray in Figure 3.4). The return value ret shall be the number of pointers
that have been replaced since these buffers now contain valid data that was sent to
this node. The reference counters of these buffers must be decreased after they have
been processed by the super-node.

Consequently, in order for the InfiniBand node to be able to receive data, the
super-node has to invoke the read-function at least once without acquiring any
data. To store the pointers to the buffers in the CQEs, the WR C structure member
wr_id can be used (see subsection 2.3.1).

Write-function The write-function, depicted in Figure 3.5, has to adhere to similar
conventions as the read-function in order to realize zero-copy. Again, the addresses
of the samples are passed to the node as arguments of the write-function, to be
subsequently submitted to the SQ. The HCA will then process the submitted work
requests and take care of the necessary memory operations.

When the pointers are successfully submitted to the SQ, the function shall return
the total number of submitted pointers ret. If the completion queue is empty, none
of these pointers may be released because the HCA has yet to access the memory
locations. If the completion queue contains entries, that means that previously
submitted send WRs are finished; these pointers can be released. So, in order to
release them, the initial pointers to the data to be sent (light gray in Figure 3.5) are
replaced by pointers to buffers which were submitted to the SQ in a previous call
of the write-function. The super-node has to be notified that it must only decrease
the reference counter of pointers that were yielded by the CQEs.

3.3.3 Proposal for a new read- and write-function
Apparently, the major shortcoming of the functions from Listing 3.2 is the lack of
an interface to pass the number of samples to be released to the super-node. There is
no way the super-node can predict how many samples may be released; this becomes
even more difficult if it is taken into account that some samples may be sent inline—
thus can be released immediately after submitting the WR—and that some work
requests may not be successfully submitted to the SQ.

Therefore, new parameters for the read- and write-function are proposed in List-
ing 3.3. The additional parameter in each function lets a node decide how many

75

3 Architecture

super-node

node

smps[]

cnt*smps[]

*smps[]

receive module

place max cnt
samples in SQ

offer cnt samples
to send with
refcnt ≥ 1

cnt

c
a
l
l

w
r
i
t
e

SQ CQ

_write()

(a) Invoking the write-function.

super-node

node

_write()

smps[]

poll CQ, but return
number submitted to SQ

ret ≤ cnt?

handle
problem!

decrease refcnt of
samples that are
not in any queue

ret

r
e
t
u
r
n

w
r
i
t
e

receive module

SQ CQ
*smps[]

replace original pointers of
samples that may not be
released (i.e., that are sub-
mitted to the SQ) by addresses
in wr_id of the CQEs

amount of
smps to
release

(b) Return of the write-function.

pointers to data to be sent pointers to buffers that
are processed by HCA

Figure 3.5: A depiction of the working principle of the write-function in an Infini-
Band node. The SQ is part of a complete QP, but the RQ is omitted
for the sake of simplicity.

items of smps[] should actually be released. The several distinctions which have to
be considered are further elaborated upon in section 4.2.

1 int (* read)(struct node *n, struct sample *smps [], unsigned cnt ,
2 unsigned * release);
3
4 int (* write)(struct node *n, struct sample *smps [], unsigned cnt ,
5 unsigned * release);

Listing 3.3: Proposal for an additional parameter in read() and write().

76

3.4 Memory management

3.4 Memory management
Originally, memory that was allocated within the framework could be allocated with
a fixed set of settings called memory-types. The VILLASnode internal alloc()
could be called, for example, with memory_hugepage, which pins memory and maps
it to hugepages (see subsection 2.4.1), or with memory_heap, which allocates aligned
memory on the heap. These embedded memory-types are not sufficient for the In-
finiBand node-type. Subsection 3.3.2 already showed that the HCA will directly
access the memory that is allocated by the super-node. Thus, as follows from sub-
section 2.2.7, the buffer must be registered with a memory region and the WRs that
are submitted to either queue of the QP must contain the local key.

Since embedding a memory-type for every node-type in the VILLASnode source
code would go against the principle of modularity, this is not an option. Conse-
quently, the most obvious solution is to allow every node-type to register its own
memory-type if necessary. In that way, every node-type can exactly define what the
alloc() and free() functions implement. For alloc(), a node-type can, for exam-
ple, define how memory should be allocated, whether the pages should be aligned,
how big the pages should be, and if the memory should be registered with a mem-
ory region. It is also possible for a node-type to implement certain functions which
interact with the memory that is allocated by the memory-type; this can, for exam-
ple, be used within the InfiniBand node to acquire the local key of a sample that is
passed as an argument of the read- or write-function.

With this method, every node-type may define a memory_type C structure, which
it must register in the same fashion as it registers the interface functions with the
super-node (line 39, Listing D.3). By enabling node-types to register their own
memory-type, the super-node knows what type of memory to use for input and/or
output buffers that are connected to nodes of this type (qi,x and qo,x in Figure 3.1).

If no memory-type is specified, the super-node will assume memory_hugepage.

3.5 VILLASnode finite-state machine
Initially, a node could reside in one of the six states displayed in Listing 3.4. The
super-node transitions the node through the states depending on the results of func-
tions from appendix C. E.g., when the super-node calls a node’s start-function, the
transition checked → started is performed if the function returns successfully.

These states were sufficient for the node-types which existed up to now (Table 1.1);
when a node resided in started, this meant it was ready to send and receive data.
This is not the case for node-types that are based (descendants of) the Virtual In-
terface Architecture. Here, a node can be initiated—for which the started state can
be used—but not connected and thus not able to send data to another node. Accord-
ingly, the introduction of a new state connected would be appropriate. Furthermore,
architectures that are based on the VIA rely on descriptors (called work requests in
the IBA) in a send and receive queue. Hence, in order to be able to receive data

77

3 Architecture

1 enum state {
2 STATE_DESTROYED = 0,
3 STATE_INITIALIZED = 1,
4 STATE_PARSED = 2,
5 STATE_CHECKED = 3,
6 STATE_STARTED = 4,
7 STATE_STOPPED = 5
8 };

Listing 3.4: The six states a node could originally reside in.

directly after the connection has been established, descriptors have to be present in
the RQ at this moment. For this reason, in (descendants of) the VIA, it is possible
to prepare elements in the receive queue prior to the actual connection.

These considerations yield the finite-state machine in Figure 3.6. The states
which are indicated with dashed borders, pending connect and connected, may be
set by the node after the super-node transitioned the instance to the started state.
The use of both states is not mandatory. If a node is in one of these two states,
the super-node interprets it as were the node in the started state. But, they can
be used within the node itself to distinguish between a node being started, being
in a pending connect state, or actually being connected. This state machine shows
similarities with the VIA’s finite-state machine in Figure 2.2. It can therefore be
used for future node-types that are based on the VIA—other than the InfiniBand
node-type that is presented in the present work—as well.

Although it is necessary to execute the transition checked → started, it is possible
to transition to stopped and destroyed from any of the three states in the dashed
square.

78

3.5 VILLASnode finite-state machine

initialized

checked

parsed

startedstopped

pending
connect

connected

destroyed

_parse()

_check()

_start()

_stop()

Figure 3.6: The VILLASnode state diagram with the two newly introduced states
pending connect and connected.

79

4 Implementation
The first section of this chapter (4.1) describes the implementation of the benchmark
which was used to measure latencies between InfiniBand host channel adapters.
Then, section 4.2 describes how the InfiniBand node-type for VILLASnode was
implemented. Subsequently, section 4.3 describes the characteristics and implemen-
tation of the benchmark that was used to analyze VILLASnode node-types. There-
after, section 4.4 describes how UC support was added to the RDMA CM library.
Finally, section 4.5 briefly describes what tools and techniques were used to process
and analyze the acquired data.

If not stated otherwise, all software that is discussed in this chapters is written in
the C programming language [KR78].

4.1 Host channel adapter benchmark
The developed host channel adapter benchmark was inspired by the measurements
which were done by MacArthur and Russel [MR12], which were already presented
in section 1.2. Although this work will likewise analyze the influence of variations in
operation modes, settings, and message sizes on latencies, it will not focus on their
influence on throughput.

The objective of this benchmark is to measure—as accurately as possible—how
long data resides in the actual InfiniBand Architecture when it is sent from one host
channel adapter to another host channel adapter. So, if latency is defined as

tlat = tsubm − trecv, (4.1)

the time data actually spends in the IBA can be approximated by setting tsubm to
the moment on which the send WR is submitted, and trecv to the moment the receive
node becomes aware of the CQE in the completion queue which is bound to the
receive queue.

Subsection 4.1.1 first introduces how and where in the source code the times-
tamps tsubm and trecv are measured. Then, subsection 4.1.2 describes what tests the
benchmark is capable of running.

4.1.1 Definition of measurement points
Many benchmarks factually measure the latency of the round-trip and divide it by
two in order to approximate the one-way time between two host channel adapters.
This is necessary if the HCAs are not part of the same host system. The latency of

81

4 Implementation

messages between InfiniBand HCAs is usually under 5 µs; there are even reports of
one-way times as small as 300 ns [MR12]. Hence, if both HCAs are part of different
systems, even small deviations between the endnodes’ system clocks could cause
significant skews in tlat and make the results useless. This problem is nonexistent if
both timestamps tsubm and trecv are generated by the same system clock.

A possible disadvantage of using the round-trip delay to approximate the one-way
delay is the additional (software) overhead. Lets assume that a message is sent
from node A to node B, back to node A. Then, there can be an additional time
penalty which is introduced by software on node B, that is necessary to submit a
work request in order to return the received message.

Furthermore, it is possible that latency benchmarks—e.g., ib_send_lat and
ib_write_lat in the OFEDTM Performance Tests1—yield distorted, possibly ideal-
ized, results. Although these are well suited for hardware and software tuning, the
results can deviate from the actual latencies that can be seen when implementing
an application with the OFEDTM verbs.

The present work therefore implements a custom benchmark that assumes two
HCAs in the same host system. It thereby prevents the skewness that is caused
by deviations between different endnodes’s system clocks and the additional soft-
ware overhead for round-trip delays. Furthermore, it makes sure that the latencies
correspond to the latencies that can be seen in actual applications.

Generation of timestamps In this benchmark, clock_gettime() [Ker10] is used
to generate timestamps. Its parameters are a variable of type clockid_t and a
reference to an instance of struct timespec (Listing 4.1) to which the function
will write the current time.

1 struct timespec {
2 time_t tv_sec ; /* seconds */
3 long tv_nsec ; /* nanoseconds */
4 };

Listing 4.1: The composition of struct timespec.

The former parameter, clockid_t, is particularly interesting. Usually, this is set
to CLOCK_REALTIME, on which clock_gettime() returns the system’s best guess of
the current time. This means that this clock can change during operation because it
is adapted by the Network Time Protocol (NTP). Therefore, this timestamp is not
suitable for the calculation of time differences with a nanosecond resolution. How-
ever, if the CLOCK_MONOTONIC is requested, clock_gettime() will return a strictly
linearly increasing timestamp starting at an unspecified point in the past. Since
linearity is guaranteed between timestamps for this clockid_t, it is best suited to
calculate tlat from equation (4.1).

1https://github.com/linux-rdma/perftest

82

https://github.com/linux-rdma/perftest

4.1 Host channel adapter benchmark

Location of timestamps in code This benchmark takes timestamps on three
different locations in the code:

• tsubm is acquired right before an already prepared work request is submitted
to the send queue with ibv_post_send(). The timestamp will be the mes-
sage’s payload. For that reason, it is important that the address to which the
scatter/gather element points is valid until the message is actually send and
that the timestamp is not overwritten in a next iteration. The pseudocode for
this case is displayed in Listing 4.2.

• trecv is measured on the receiving node. It is acquired right after ibv_poll_cq()
on the completion queue that is bound to the receive queue returns with a
positive value. The pseudocode for this case is displayed in Listing 4.3.
The function that is displayed in Listing 4.3 lies in the datapath, and the
moment on which the timestamp and the identifier of the message are saved
to be evaluated later, are time-critical. For one, this is optimized by using
2 MiB hugepages instead of conventional 4 KiB pages. For example, when
8000 messages are received, 8000 8-byte timestamps (64 KiB) and 8000 4-byte
identifiers (32 KiB) must be saved. These 96 KiB fit into one single hugepage,
however, it would require 24 conventional pages and in turn 24 potential page
faults. For the sake of readability of the code, the timestamps and message
identifiers are spread among two hugepages.
Furthermore, it is made sure that the pages are immediately touched after
initialization with mmap() to prevent page faults from happening in the da-
tapath. After allocating the memory, the pages are locked with mlockall().
More information on memory optimization can be found in subsection 2.4.1.

• tcomp is measured in the same fashion as trecv, but on the sending node.
ibv_poll_cq() polls the completion queue that is bound to the send queue.
It gives an indication of the time that passes before the sending node gets a
confirmation that the message has been sent. Similar to equation (4.1), the
latency before a confirmation of transmission is available can be defined as:

tcomp
lat = tsubm − tcomp. (4.2)

This timespan is relevant because buffers in the main memory cannot be reused
as long as there is no confirmation that the HCA copied the data from the
host’s main memory to its internal buffers. (This is not the case for data that
is sent inline, see subsection 2.3.1.)

There is one special case which has not been discussed yet. tsubm is set to the
time right before the WR is submitted to the send queue. Since it will take a
certain amount of time before the HCA will copy the data (i.e., the timestamp)
from the host’s main memory to its internal buffers, it is possible to continue to
alter the value after the work request has been posted. This benchmark offers a

83

4 Implementation

1 // ‘int messages ’ represents the number of messages to be sent
2 struct timespec tp[messages];
3
4 for (int i = 0; i < messages ; i++) {
5 /**
6 * Prepare WR with an sge that points to tv_nsec of tp[i].
7 * By using an array of timespecs , it is guaranteed that
8 * the timestamp will not be overwritten .
9 */

10
11 clock_gettime (CLOCK_MONOTONIC , &tp[i]);
12 ibv_post_send ();
13 }

Listing 4.2: Pseudocode which records the moment a messages is submitted to the
Send Queue (SQ).

1 struct timespec tp;
2
3 while (1) {
4 ibv_get_cq_event (); // Only necessary for event based polling
5
6 while (ibv_poll_cq ()) {
7 clock_gettime (CLOCK_MONOTONIC , &tp);
8
9 /**

10 * Save tp and message identifier in an array and
11 * return as soon as possible , so that as little
12 * as possible time is lost before polling goes on.
13 */
14 }
15
16 ibv_req_notify_cq (); // Only necessary for event based polling
17 }

Listing 4.3: Pseudocode which records the moment a Completion Queue Entry
(CQE) becomes available in the Completion Queue (CQ).

function to measure tsend, which approximates the moment the HCA copies the
data to its internal buffer. The delta

∆tinline ≈ t̃send
lat − t̃lat, (4.3)

approximates the amount of time which will be saved by sending the data inline.
In equation (4.3), t̃send

lat is the median latency measured with send-timestamps, and
t̃lat is the median latency measured with submit-timestamps. The pseudocode of
Listing 4.2 must be replaced with the pseudocode of Listing 4.4 to transmit tsend

instead of tsubm.

84

4.1 Host channel adapter benchmark

1 // Global variable
2 struct timespec tp;
3
4 void * t_function (void * ctx)
5 {
6 while (1) {
7 clock_gettime (CLOCK_MONOTONIC , &tp);
8 }
9

10 return NULL;
11 }
12
13 pthread_t t_thread ;
14 pthread_create (& t_thread , NULL , t_function , NULL);
15
16 // ‘int messages ’ represents the number of messages to be sent
17 for (int i = 0; i < messages ; i++) {
18 /**
19 * Prepare WR with sge that points to tp. tv_nsec . It will
20 * continue to change since the thread continues to run in the
21 * background .
22 */
23
24 // No need to invoke clock_gettime () here
25 ibv_post_send (); // Post prepared WR
26 }

Listing 4.4: Pseudocode which continues to update an instance of the timespec C
structure in a separate thread, whilst a pointer to this instance has
already been submitted to the Send Queue (SQ).

4.1.2 Supported tests
The list below provides an overview of the different settings that can be applied.
Later, section 5.1 will present the results for different combinations of these settings.

• The service type (Table 2.1) can be varied between RC, UC, and UD.

• The poll mode (Figure 2.21) can be set to busy polling or wait for event.
The poll mode can be set independently for trecv and tcomp.

• Inline mode (subsection 2.3.1) can be turned on for small messages.

• Unsignaled completion can be enabled. When this switch is set, send WRs
will not generate WQEs when the HCA has processed them.

• The operation (Table 2.5) can be set to send with immediate or RDMA
write with immediate. Both operations are only supported with immediate in

85

4 Implementation

this benchmark since the ImmDt header is used to identify the order of the
messages at the receive side.

• The burst size represents the number of messages that will be sent during one
test and is limited to the maximum size of a QP in the HCA. The benchmark
is built in a way that it will continuously send messages, until this value is
reached. It can be varied between 1 and 8192.

• An intermediate pause (in nanoseconds) can be set. The benchmark will
sleep for this amount of time in between the ibv_post_send() calls.

• Either the send or submit time can be measured. This switch determines
whether tsubm or tsend is measured.

• The message size SM can be set to

SM = 8 · 2i B, i ∈ [0, 12], (4.4)

where 8 B is the minimum size of a message with a timestamp. A maximum
of 32 768 B (32 KiB) is chosen because messages in VILLASnode are unlikely
to be bigger than 32 KiB.

Although the possibility to submit linked lists of scatter/gather elements and
work requests to the send queue will be used in the VILLASframework InfiniBand
node-type, its influence on latency will not be examined in this benchmark. Linking
scatter/gather elements can become handy if data from different locations in the
memory must be sent. Submitting combined work requests can be convenient if a
whole batch of WRs has to be posted and it is not necessary that a WR is posted
immediately after its generation (e.g., creating a set of receive WRs in a loop and
posting the linked list right after the closing bracket of the loop). However, the
lowest latency is achieved by passing only one memory location to the HCA and by
sending a message immediately after generation of the timestamp.

4.2 VILLASframework InfiniBand node-type
Chapter 3 already introduced the architecture of node-types in VILLASframework
and concepts to enable compatibility of VIAs—and in particular the IBA—with
VILLASframework. The key objective of the development of an InfiniBand node-
type was the implementation of all functions in appendix C with as little as possible
alterations to the pre-existing architecture. Other than the proposed changes from
subsection 3.3.3, the VILLASframework architecture was not modified with regards
to the node-type interface and the memory management.

The implementation of the more apparent functions, e.g., parse(), check(),
reverse(), print(), destroy(), and stop(), will not be discussed. This section
mainly focuses on non-obvious functions, which are either InfiniBand specific (i.e.,
the start-function in subsection 4.2.1) or had to be optimized to make full use of the

86

4.2 VILLASframework InfiniBand node-type

kernel bypass InfiniBand offers (i.e., the read- and write-functions in subsection 4.2.3
and 4.2.4, respectively). The complete source code of the InfiniBand node-type can
be found on VILLASnode’s public Git repository.2

4.2.1 Start-function
After a configuration file, which is set by a user, is interpreted by the parse-function
and reviewed by the check-function, the super-node will invoke the start-function
to initialize all necessary structures. It starts with the creation of a communica-
tion event channel with rdma_create_event_channel() and the initialization of
an RDMA communication identifier with rdma_create_id(). The latter is bound
to both a local InfiniBand device that was defined in the configuration file and the
event channel.

Before the node allocates the protection domain with ibv_alloc_pd(), the com-
munication identifier tries to resolve the remote address with rdma_resolve_addr()
(in case of an active node) or places itself into a listening state with rdma_listen()
(in case of a passive node). Whether the node becomes an active or passive node de-
pends on the presence of a remote host address to connect to in the configuration file.
Finally, the start-function creates a separate thread with pthread_create() [Ker10]
to monitor all asynchronous events on the rdma_cm_id.

When everything is set up successfully, the start-function will return 0, to indicate
success. The super-node then moves the node to the started state (Figure 3.6).

4.2.2 Communication management thread
The function that is executed by the thread that is spawned by the start-function is
kept busy by a while loop until the node is moved to the started state. This avoids
races and ensures that the state transitions from Figure 3.6 are obeyed.

The remainder of this function consists of a while loop that monitors the com-
munication identifier in a blocking manner with rdma_get_cm_event() (subsec-
tion 2.3.3). Within this loop, the different events are handled by a switch state-
ment. The loop, the switch statement, and a short description of what happens
for every case are displayed in Listing 4.5. Before expanding on the different opera-
tions of every case, a note on the blocking characteristics of rdma_get_cm_event()
has to be made. This function enables the OS to suspend further execution of the
thread for an indefinite amount of time, which usually results in difficulties when
trying to cancel (or kill) the thread. However, read(), which lies at the heart of
rdma_get_cm_event(), is a required cancellation point. A thread, for which cancela-
bility is enabled, only acts upon cancellation requests when it reaches a cancellation
point [Ker10]. Furthermore, as defined in IEEE Std 1003.1TM-2017 [18a]: “[when]
a cancellation request is made with the thread as a target while the thread is sus-
pended at a cancellation point, the thread shall be awakened and the cancellation

2https://git.rwth-aachen.de/acs/public/villas/VILLASnode/

87

https://git.rwth-aachen.de/acs/public/villas/VILLASnode/

4 Implementation

request shall be acted upon.” Thus, even though the thread is suspended, it can be
canceled with pthread_cancel() if necessary.

Active node As defined in the previous subsection, an active node is a node that
tries to connect to another node. The first event that should appear after the start-
function has been called is RDMA_CM_EVENT_ADDR_RESOLVED. This event denotes that
the address has been resolved and that the QP and two CQs—one for the receive
and one for the send queue—can be created. These instances are created using
rdma_create_qp() and ibv_create_cq(), respectively. It is important for the
functioning of the InfiniBand node-type’s write-function (subsection 4.2.4) that the
QP’s initialization attribute sq_sig_all is set to ‘0’.

After all necessary structures have been initialized, rdma_resolve_route() will
be invoked. Then, when the route has successfully been resolved, the event channel
will unblock again and return RDMA_CM_EVENT_ROUTE_RESOLVED. This means that
everything is set up, and rdma_connect() may be called to invoke a connection
request. The state of the active node is then set to pending connect.

When the remote node accepts the connection, RDMA_CM_EVENT_ESTABLISHED oc-
curs and the state of the node is set to connected.

If the node operates with the UD service type, the last mentioned event structure
contains the Address Handle (AH), which includes information to reach the remote
node. This value is saved because in UD mode it has to be defined in every work
request (subsection 2.3.1). Although the node is not really connected—after all UD
is an unconnected service type—the node will be transitioned to the connected state.
In the context of VILLASnode, this state implies that data can be send, either
because the QPs are connected or because the remote AH is known.

Passive node As mentioned before, a passive node listens on the communica-
tion identifier and waits until another node reaches out to it. If another node calls
rdma_connect() on it, the channel will unblock and return the event
RDMA_CM_EVENT_CONNECT_REQUEST. Thereon, the node will build its QP, its CQs,
and accept the connection with rdma_accept(). If the service type of the node is
a connected service type (i.e., UC or RC), the node will move to the pending con-
nect state. If the service type is unconnected (i.e., UD), it will move directly to the
connected state.

In case of a connected service type, the RDMA_CM_EVENT_ESTABLISHED event occurs
when the connection has successfully been established. The state is then set to
connected.

Error events Error events which are caused because a remote node could not be
reached are not necessarily fatal for the complete node. In this case, a fallback
function which sets the node into the listening mode instead of the active mode will
be invoked. This behavior is configurable; if a user sets the appropriate flag in the
configuration file these errors can be made fatal.

88

4.2 VILLASframework InfiniBand node-type

1 struct rdma_cm_event *event ;
2
3 while (rdma_get_cm_event (event_channel , &event) == 0) {
4
5 switch (event ->event) {
6 case RDMA_CM_EVENT_ADDR_RESOLVED :
7 // Create QP , receive CQ , and send CQ.
8 // Call rdma_resolve_route ()
9 // State : STARTED

10 case RDMA_CM_EVENT_ADDR_ERROR :
11 // Try fallback and set mode rdma_cm_id to listening
12 // State : STARTED
13 case RDMA_CM_EVENT_ROUTE_RESOLVED :
14 // Call rdma_connect ()
15 // State : PENDING_CONNECT
16 case RDMA_CM_EVENT_ROUTE_ERROR :
17 // Try fallback and set mode rdma_cm_id to listening
18 // State : STARTED
19 case RDMA_CM_EVENT_UNREACHABLE :
20 // Try fallback and set mode rdma_cm_id to listening
21 // State : STARTED
22 case RDMA_CM_EVENT_CONNECT_REQUEST :
23 // Create QP , receive CQ , and send CQ.
24 // Call rdma_accept ()
25 // State : PENDING_CONNECT
26 case RDMA_CM_EVENT_CONNECT_ERROR :
27 // Try fallback and set mode rdma_cm_id to listening
28 // State : STARTED
29 case RDMA_CM_EVENT_REJECTED :
30 // Try fallback and set mode rdma_cm_id to listening
31 // State : STARTED
32 case RDMA_CM_EVENT_ESTABLISHED :
33 // In case of UD , save address handle from event struct
34 // State : CONNECTED
35 case RDMA_CM_EVENT_DISCONNECTED :
36 // Release all buffers and destroy everything
37 // State : STARTED
38 case RDMA_CM_EVENT_TIMEWAIT_EXIT :
39 break ;
40 default :
41 // Error message : unkown event
42 }
43
44 rdma_ack_cm_event (event);
45 }

Listing 4.5: The events that are monitored by the communication management
thread. Although not explicitly stated in this listing, every case block
ends with a break.

89

4 Implementation

4.2.3 Read-function
This subsection focuses on the implementation of the read-function which was pre-
viously proposed in section 3.3. Contrary to the functioning principle in Figure 3.2,
which suggests that all samples that are passed to the read-function will definitely
be submitted and must thus be held, there is a chance that some samples will not
be submitted successfully. These samples must be released again.

Figure 4.1 shows a decision graph for the algorithm that is implemented by the
read-function. The example case, depicted by the red path, assumes that 5 empty
samples are passed to the read-function, and that there are at least threshold WQEs
in the RQ. This threshold, which is set in the configuration file, is necessary to
ensure that a node can always receive samples because there are always at least
threshold pointers in the RQ. If this threshold has not yet been reached, all passed
samples are submitted to the receive queue and *release is set to 0 (depicted by
the black path). Then, the function returns with ret = 0, without ever polling the
completion queue.

example caseexample caseexample case

0x4

0x5

0x6

0x7

0x8

empty, unused

empty, unused

empty, unused

empty, unused

empty, unused

at least
threshold WQs

in RQ?

block read() by
polling CQ until
X < cnt CQEs are
available.

do not poll CQ
and set X = cnt
and *release = 0

ret = ib_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release);

submit X
addresses
to RQ

0x4

0x5

0x6

0x7

0x8

empty, posted

empty, posted

empty, posted

empty, unused

empty, unused

0x0

0x1

0x2

0x7

0x8

data, received

data, received

data, received

empty, unused

empty, unused

replace X posted
addresses by X
already polled
CQEs

ret = X

*release

no

yes == 0

== cnt
empty, unused

ret = 0

samples not to be released samples to be released

Figure 4.1: The decision graph for the read-function in the InfiniBand node. Prior
to invoking the read-function, *release is always set to cnt by the
super-node.

If the threshold has been reached, the red path is followed. The completion queue
is polled in a while loop until at least one, but not more than cnt, CQEs are available.
This will block further execution the read-function, which is the intended behavior.
After all, when a certain amount of WQEs resides in the RQ, it is undesired to
continue to submit new WRs. At a certain moment, the queue would be full and it
would not be possible to submit new addresses that the node got from the super-
node. However, this is necessary to free places in *smps[], which can only hold up

90

4.2 VILLASframework InfiniBand node-type

to cnt values. So, if this blocking behavior was not in place, the super-node would
keep passing new addresses until the receive queue would overflow and no addresses
from CQEs could be returned to the super-node anymore.

Because ibv_poll_cq() does not rely on any of the system calls that are listed
in [18a], the thread that contains this while loop would not notice if a cancella-
tion request is sent. Therefore, pthread_testcancel() [Ker10] should regularly be
called within this loop.

The addresses in *smps[] are not immediately swapped with the X addresses that
are returned with ibv_poll_cq(). First, after the poll-function has indicated that
X CQEs with addresses are available, X addresses from *smps[] are submitted to
the RQ. This ensures that the RQ does not drain and it makes room for the addresses
from the CQEs in *smps[]. Finally, the polled addresses are swapped with the
addresses that were posted to the receive queue, and the read-function returns with
ret = X. Note that *release remains untouched: all values in *smps[] are either
received or not used, and must thus be released.

4.2.4 Write-function
The write-function, depicted in Figure 4.2, is a bit more complex than the read-
function. This time, the algorithm depicted in the decision graph includes four
example cases.

Immediately after the write-function is invoked by the super-node, it tries to sub-
mit all cnt samples to the SQ. While going through *smps[], the node dynamically
checks whether the data can be sent inline (subsection 2.3.1) and whether an AH
must be added. The node has to distinguish among four cases:

• the samples will be submitted normally and may thus not be released by the
super-node until a CQE with the address appears;

• the samples will be submitted normally, but some samples will be immediately
marked as bad and must thus be released by the super-node;

• the samples will be sent inline and, because the CPU directly copies them to
the HCA’s memory, must thus be released by the super-node;

• an arbitrary combination of all abovementioned cases.
For samples that are sent normally, the WR’s send_flags (Listing 2.3) must be

set to IBV_SEND_SIGNALED. These samples may only be released after the HCA has
processed them, which must not necessarily be in the same call of the write-function.
The only way for the HCA to let the node know that it is done with a sample, is
through a completion queue entry. Since the QP is created with sq_sig_all=0, the
generation of CQEs for samples must explicitly be requested.

When a sample is sent inline, send_flags must only be set to IBV_SEND_INLINE.
It is not desired to get a CQE for an inline WR since it can be—and thus will be—
released immediately after being submitted to the SQ. After all, it is not possible
to release a sample twice.

91

4 Implementation

example casesexample casesexample cases

0x4

0x5

0x6

0x7

0x8

data, unposted

data, unposted

data, unposted

data, unposted

data, unposted

ret = ib_write(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release);

0x4

0x5

0x6

0x7

0x8

data, posted

data, posted

data, posted

data, posted

data, posted

0x4

0x5

0x6

0x7

0x8

data, posted

data, posted

data, posted

data, bad

data, bad

0x4

0x5

0x6

0x7

0x8

data, inline

data, inline

data, inline

data, inline

data, inline

0x4

0x5

0x6

0x7

0x8

data, inline

data, posted

data, inline

data, bad

data, bad

try to post cnt
samples

dynamically check
whether a sample can
be sent inline

0x4

0x5

0x6

0x7

0x8

data, posted

data, posted

data, posted

data, posted

data, posted

0x7

0x8

0x6

0x7

0x8

data, bad

data, bad

data, posted

data, bad

data, bad

0x4

0x5

0x6

0x7

0x8

data, inline

data, inline

data, inline

data, inline

data, inline

0x4

0x6

0x7

0x8

0x8

data, inline

data, inline

data, bad

data, bad

data, bad

0x0

0x1

0x6

0x7

0x8

empty, compl.

empty, compl.

data, posted

data, posted

data, posted

0x7

0x8

0x0

0x1

0x8

data, bad

data, bad

empty, compl.

empty, compl.

data, bad

0x4

0x5

0x6

0x7

0x8

data, inline

data, inline

data, inline

data, inline

data, inline

0x4

0x6

0x7

0x8

0x0

data, inline

data, inline

data, bad

data, bad

empty, compl.

reorder list.
pointers to samples
that were sent inline
or were not sent (bad)
must be released

set ret to number of
samples that were
successfully submitted
to send queue

try to poll as many
CQEs as samples that
may not be released
are present in
*smps[]

example: max 2 CQEs
available

check whether the
inline-counter has
reached its threshold

if this is the case,
change inline-flag
to signaled-flag

samples not to be released samples to be released

Figure 4.2: The decision graph for the write-function in the InfiniBand node. Prior
to invoking the write-function, *release is always set to cnt by the
super-node.

There is one exception to this, however. Although no notifications will be gener-
ated if the signaled flag is not set, the send queue will start to fill up nonetheless.
Therefore, when a lot of subsequent WRs are submitted with the inline flag set, oc-
casionally a WR with the signaled flag must be submitted. For this reason, the
write-function contains a counter which, when reaching a configurable threshold,
changes an IBV_SEND_INLINE to an IBV_SEND_SIGNALED.

When all samples have been submitted to the SQ, the value ret, which will be re-
turned to the super-node when the write-function returns, is set to the total number
of samples that were successfully posted to the send queue.

92

4.2 VILLASframework InfiniBand node-type

Now, because the node can only use *release to communicate how many samples
to release, *smps[] must be reordered. All samples that must be released, i.e.,
samples that were not successfully submitted to the send queue or samples that
were sent inline, must be placed at the top of the list.

In the next step, the write-function shall try to poll

Cpoll = cnt − Crelease (4.5)

CQEs, which corresponds to the number of places in *smps[] that are still free. Here,
cnt is the total number of samples in *smps[] and Crelease the number of samples
that have already been marked to be released when the write-function returns. It is
certain that all addresses that return from the CQ must be released, since samples
that were sent inline will not generate a CQE.

4.2.5 Overview of the InfiniBand node-type
Figure 4.3 summarizes all components in the VILLASnode InfiniBand node-type.
Every component that is marked with an asterisk is listed in Table 4.1. Here, the
sections that describe the respective basics (chapter 2), architecture (chapter 3), and
implementation (chapter 4) are summarized.

Table 4.1: InfiniBand node-type components from Figure 4.3 and the respective
sections of the present work that elaborate upon these components.

Component Basics Architecture Implementation

HCA subsection 2.2.1
Queue pair subsection 2.2.2
Protection domain subsection 2.2.7
Event channels subsection 2.3.2
Communication identifier subsection 2.3.3
Buffers subsection 2.2.7 section 3.4
VILLASnode section 3.1
Read-function section 3.3 subsection 4.2.3
Write-function section 3.3 subsection 4.2.4
Start-function subsection 4.2.1
Management thread subsection 4.2.2

93

4 Implementation

VILLASnode*

InfiniBand nodeInfiniBand node

rdma_cm_id*

queue pair*

modify QP

recvrecv

sendsend

CQs

recvrecv

sendsend

communication
event channel*

protection domain*

buffers*

smps[]

smps[]

communication
management
thread*

s
t
o
p

s
t
a
r
t
*

H
C
A
*

H
C
A
*

r
e
a
d
*

w
r
i
t
e
*

datadata

datadata

comm.comm.

Figure 4.3: An overview of the VILLASnode InfiniBand node-type and its compo-
nents.

4.3 VILLASnode node-type benchmark
The VILLASnode node-type benchmark is intended to compare different node-types
with each other. The structure of the benchmark is depicted in Figure 4.4. The node-
type under test could be, for example, the InfiniBand node-type. The benchmark
is completely based on existing mechanisms within VILLASnode.

First, a signal node generates samples which, as aforementioned, also include
timestamps. These samples are then sent to a file node, which in turn writes them
to a comma-separated values (CSV) file, here called in. Simultaneously, the samples
are sent to a sending instance of the node-type that is being tested. Eventually, a
receiving instance of that node-type adds a receive timestamp and sends the samples
to a second file node. This node writes the samples to a CSV file called out.

Although the out log file will contain both the generation timestamp and the
receive timestamp, the in log file is necessary to monitor and analyze lost samples.
This benchmark is meant to analyze the latencies of the different node-types, but
also to discover their limits. Because it is possible that the signal generation misses

94

4.3 VILLASnode node-type benchmark

super-node 2super-node 1

node-type under test

file nodefile node

nodenode nodenode

inin
signal nodesignal node

file nodefile node

outout

Figure 4.4: The VILLASnode node-type benchmark is formed by connecting a signal
node, two file nodes, and two instances of the node-type that shall be
tested.

steps at high frequencies (more on that in the next subsection), a missing sample
in the out log file does not necessarily mean that something went wrong within
the nodes that were tested. By comparing the in and out log file, the benchmark
can decide which samples were missed by the signal node, and which samples were
missed by the node that was tested.

4.3.1 Signal generation rate
In order for the benchmark to create an environment similar to the real use cases
VILLASnode, the signal node must be time-aware and insert samples at a given
rate. This injection rate of samples must be adjustable. Although this work only
focused on rates between 100 Hz and 100 kHz, lower and higher rates are theoretically
possible.

Listing 4.6 displays a simplified version of the signal node-type’s read-function.
When a super-node that holds a signal node tries to acquire samples from it,
it calls its read-function. This function blocks further execution until a function
task_wait() returns. Assuming that the super-node would usually call the read-
function at an infinite high frequency, the wait-function ensures that it now only
returns after a fixed amount of time.

The wait-function returns an integer steps, which indicates the number of steps
between the timestamps of the samples. Lets assume that

ti+1
task_wait() > ti

sample + 1
fsignal

s, (4.6)

when attempting to generate the sample with the timestamp ti+1. Here, ti+1
task_wait()

is the moment task_wait() is called, ti
sample the moment the last sample was gen-

erated, i the iteration of signal_generator_read(), and fsignal the frequency the
signal node is set to. When the condition in equation (4.6) holds, task_wait()

95

4 Implementation

cannot wait until ti+1
sample since that time has already passed. Hence, the function

must wait until

ti+2
sample = ti

sample + 2 · 1
fsignal

s, (4.7)

in order to stay synchronized with the set frequency. Now, instead of 1 step, 2
timesteps have passed since the last call of the wait-function. In other words, 1 step
is missed.

After the missed steps have been counted and the timestamp has been calculated,
the actual samples are generated. These will be returned to the super-node through
the *smps[] parameter of the read-function. This behavior is similar to that of the
read-function of the InfiniBand node-type.

1 int signal_generator_read (struct node *n, struct sample *smps [],
2 unsigned cnt , unsigned * release)
3 {
4 struct signal_generator *s = (struct signal_generator *) n->_vd;
5 struct timespace ts;
6 int steps ;
7
8 /* Block until 1/p->rate seconds elapsed */
9 steps = task_wait (&s->task);

10
11 if (steps > 1 && s-> monitor_missed) {
12 warn(" Missed steps : %u", steps -1);
13
14 s-> missed_steps += steps -1;
15 }
16
17 ts = time_now ();
18
19 /**
20 * Generate sample (s) with signal and timestamp ts .
21 * Return this sample via the *smps [] parameter of
22 * signal_generator_read ()
23 */
24 }

Listing 4.6: Simplified version of the read-function of the signal node-type.

This subsection will expand on two different methods to implement task_wait()
and thus to monitor the rate with which samples are sent. Although the first method
is the easier and preferred method, it does not work for high frequencies such as
100 kHz on which the InfiniBand node can operate. For these frequencies to work,
the second method is introduced.

Timer expiration notifications via a file descriptor Linux provides an API for
timers. The function timerfd_create() creates a new timer object and returns

96

4.3 VILLASnode node-type benchmark

a file descriptor that refers to that timer. Once the timer’s period is set with
timerfd_settime(), the file descriptor can be read with read() [Ker10].

Listing 4.7 shows the implementation of task_wait() with a Linux timer object.
When read() is called on the timer’s file descriptor (line 6, Listing 4.7), it will write
the number of elapsed periods since the last modification of the timer or since the
last read to steps. If no complete period has gone by when read() is called, the
function will block until this is the case.

1 uint64_t task_wait (struct task *t)
2 {
3 int ret;
4 uint64_t steps ;
5
6 ret = read(t->fd , &steps , sizeof (steps));
7
8 if (ret < 0)
9 return 0;

10
11 return steps ;
12 }

Listing 4.7: Implementation of task_wait() by waiting on timer expiration notifi-
cations via a file descriptor.

Although Linux’ API for timer notifications via a file descriptor offers a convenient
way of keeping track of elapsed time periods, it is not suited for high-frequency
signals. On the one hand, read() causes a system call which is relatively expensive
since it causes a switch between user and kernel mode. On the other hand, the
operating system is inclined to suspend the process when the read-function blocks.
Since it takes a certain amount of time to wake up the process when a period has been
elapsed, this can cause a potential timing violation for the next sample according to
equation (4.6).

Busy polling the x86 Time Stamp Counter All x86 CPUs since the Pentium era
contain a 64-bit register called Time-Stamp Counter (TSC). Since the Pentium 4
era, this counter increments at a constant rate which depends on the maximum core-
clock to bus-clock ratio or the maximum resolved frequency at which the processor
is booted [18c]. The nominal frequency can be calculated using:

fT SC
nominal = CPUID.15H.ECX[31 : 0] · CPUID.15H.EBX[31 : 0]

CPUID.15H.EAX[31 : 0] . (4.8)

In his white paper [Pao10], Paoloni describes how the TSC can be used to measure
elapsed time during code execution. In his work, the Read Time-Stamp Counter
(RDTSC) and Read Time-Stamp Counter and Processor ID (RDTSCP) instructions

97

4 Implementation

that are described in [18d] are used to read the TSC. Listing 4.8 shows the inline
assembler that was used in VILLASnode to acquire the timestamp.

The functioning of both instructions is largely the same. After the rdtsc/rdtscp
instruction is invoked, the 32 MSB of the timestamp are placed in rdx and the 32
LSB in rax. To get a valid 64-bit variable, rdx is shifted left 32 bit and subsequently
disjuncted with rax. The resulting value is set as output variable tsc, which is
also returned by both functions in Listing 4.8. During this operation, the high-order
32 bit of rax, rdx, and rcx are cleared. When hard-coded registers are clobbered as
a result of the inline assembly code, this must be revealed up front to the compiler
(line 12, Listing 4.8).

1 static inline uint64_t rdtsc ()
2 {
3 uint64_t tsc;
4
5 __asm__ __volatile__ (
6 " lfence ;"
7 " rdtsc ;"
8 "shl $32 , %% rdx;"
9 "or %%rdx ,%% rax"

10 : "=a" (tsc)
11 :
12 : "%rcx", "%rdx", " memory "
13);
14
15 return tsc;
16 }

a: RDTSC.

1 static inline uint64_t rdtscp ()
2 {
3 uint64_t tsc;
4
5
6 __asm__ __volatile__ (
7 " rdtscp ;"
8 "shl $32 , %% rdx;"
9 "or %%rdx ,%% rax"

10 : "=a" (tsc)
11 :
12 : "%rcx", "%rdx", " memory "
13);
14
15 return tsc;
16 }

b: RDTSCP.

Listing 4.8: The RDTSC instruction with fencing and the RDTSCP instruction,
written in inline assembler. Both functions must be placed inline and
thus be preceded by __attribute__((unused,always_inline)).

The main difference between RDTSC and RDTSCP is that, unlike the former,
the latter waits until all previous instructions have been executed and all previous
loads are globally visible. One consequence of this, among others, was described by
Paoloni [Pao10]. He demonstrated that RDTSC showed a standard deviation of 6.9
cycles, whereas RDTSCP only showed a standard deviation of 2 cycles.

Since not all x86 processors support RDTSCP, VILLASnode nonetheless includes
RDTSC. However, to improve its behavior, the Load Fence (LFENCE) instruc-
tion [18e] is executed prior to the actual read instruction. This type of fence serial-
izes all load-from-memory instructions prior to its call. Furthermore, no instructions
that are placed after the load fence execute until the fence has completed.

Listing 4.9 shows the implementation of task_wait() based on the TSC. Dur-
ing the (i + 1)th call of task_wait(), the counter is busy polled until the desired

98

4.3 VILLASnode node-type benchmark

timestamp ti+1
sample is reached. Then, it updates the next timestamp ti+2

sample and si-
multaneously calculates whether ti+1

sample is actually only one step after ti
sample or if

some steps were missed. The period can be calculated according to:

T = f tsc
nominal

rate
. (4.9)

1 uint64_t task_wait (struct task *t)
2 {
3 int ret;
4 uint64_t steps , now;
5
6 do {
7 now = rdtscp ();
8 } while (now < t->next);
9

10 for (steps = 0; t->next < now; steps ++)
11 t->next += t-> period ;
12
13 return steps ;
14 }

Listing 4.9: Implementation of task_wait() by busy polling the x86 Time-Stamp
Counter (TSC).

The advantage of this implementation of task_wait() is that given periods can
be approximated very accurately (σ = 2 clock cycles, [Pao10]). Now, complications
will rather arise because signal_generator_read() is not called frequently enough
because datapaths are too long.

4.3.2 Further optimizations of the benchmark’s datapath
Before the signal node from Figure 4.4 generates a sample, it checks whether steps
were missed. Then, after it has generated a sample, the super-node has to write
it to the file node and an instance of the node-type that is being tested. Only
then, the signal node can generate the next sample. Both the time that is spent on
this check and the time that is spent in the file node are part of the datapath and
affect the time it takes before task_wait() is invoked again. Increasing ti+1

task_wait()
accordingly increases the chance of a timing violation according to equation (4.6).
It is thus desirable that the time that is spent on the check and in the file node is
minimized.

Suppressing information to the standard output Originally, a file node always
kept track of the total number of missed steps, and wrote a message to the standard
output as soon as one or more steps were missed. Especially the latter is relatively

99

4 Implementation

expensive since printf() [Ker10] invokes a system call. For high rates, it can cause
a snowball effect: this situation only occurs when the generation rate is already too
high so that timing requirements are not met, and now, additionally, the time that
is spent in the datapath is increased even more by adding system calls to write to
the standard output. Since the missed steps can also be derived from the in and
out log file, it is made configurable to disable internal logging of missed steps. Now,
when minimal latency is required, like in the case of the VILLASnode node-type
benchmark, a flag can be set in the configuration file.

Buffering the file stream Usually, each call to the stdio library—which is used by
the file node-type to read from and write to files—results in a system call. Although
it is not possible to get rid of these system calls completely—after all, they are
necessary to write to the in and out log files—they should be reduced to an absolute
minimum in the datapath. To achieve this, the file node-type was modified so that
the buffering of the file stream can be configured. Now, a user can define the size
of a buffer in the configuration file. Buffering is controlled with setvbuf() [Ker10],
which enables an instance of the file node-type to read or write data in units equal
to the size of that buffer.

4.4 Enabling UC support in the RDMA CM
The RDMA CM does not officially support unreliable connections. However, by
modifying small parts of the librdmacm library and by re-compiling it, it is possible
to facilitate UC anyway. This enables the present work to also analyze the unreliable
connection with the custom and the VILLASnode node-type benchmark.

To enable support, the rdma_create_id2() function of the librdmacm has to be
made non-static. As a result, this function can directly be accessed, whereas it is
normally only accessible through the wrapper rdma_create_id(). Now, also the QP
type can be passed on the the RDMA CM library, and by passing RDMA_PS_IPOIB
as port_space and IBV_QPT_UC as qp_type, a managed UC QP will be created.

4.5 Processing data
In order to analyze the generated comma-separated value dumps, several Python 3.7
scripts were developed in Jupyter Notebook.3, 4 Jupyter Notebook (formerly IPython
Notebook) is part of Project Jupyter and allows a user to interactively explore
Python scripts. On the one hand, it enables (stepwise) execution of Python code
in a web browser, based on IPython [PG07]. On the other hand, rich text docu-
mentation, written in Markdown,5 can directly be included in the document. The

3https://python.org
4https://jupyter.org
5https://daringfireball.net/projects/markdown/

100

https://python.org
https://jupyter.org
https://daringfireball.net/projects/markdown/

4.5 Processing data

documentation, together with the source code, can be exported to several formats,
e.g., to .py, .tex, .html, .md, and .pdf.

Jupyter Notebook’s command line API makes it also highly suitable for automatic
analysis of large datasets of timestamps. It is, for example, included in the CI/CD
pipeline of VILLASnode to automatically analyze the performance impact of certain
changes in the source code and to compare node-types against each other. Further-
more, the scripts are included in the present work’s build automation, which makes
it possible to easily convert raw data from the benchmarks to convenient graphs.

Besides several standard libraries, NumPy6—which adds support for numerical
calculations in Python—and matplotlib7—which adds a comprehensive toolset to
create 2D plots—were used.

4.5.1 Processing the host channel adapter benchmark’s results
Histograms The first type of graph that is used in chapter 5 and appendix F
is a histogram. The Python script that generates this graph first needs the path
that contains the timestamps. This can be passed on through the command line or
directly in the notebook. Then, the script loads the JSON file that must be present
in every data directory. It contains settings on how to process the data, but also
information about the plots, e.g., dimensions of the figure and labels.

When all preparatory work is done, the Python script loads all timestamps as de-
fined in subsection 4.1.1. To keep the minimum message size as low as possible, this
benchmark only sends the 8-byte long tv_nsec from Listing 4.1. However, the com-
plication with only sending this long integer is that it overflows from 999 999 999 ns
to 0 ns. But, since transmissions cannot take longer than 1 s—assuming no severe
errors occur—this overflow is resolved by adding 1 s to trecv and tcomp if they are
smaller than tsubm/tsend.

Subsequently, all data is displayed in a histogram. To be able to see differences
in the distribution of latencies at a glance and thus to make the comparison of the
results easier, all histograms range from 0 ns to 10 000 ns. A small box in the top
left or top right corner then provides information on the percentage of values above
this limit and about the maximum value. A red, vertical line indicates the median
value of the data set.

This script is able to compare data sets from the same run—for example, tlat

and tcomp
lat —or data sets from different runs—for example, tlat from various runs

with distinct settings. In the present work, the former and the latter first occur in
Figure 5.2 and Figure 5.5, respectively.

Median plot with variability indication Histograms are great for getting a more
comprehensive view of the distribution of latencies and the effect specific changes
have on this distribution. However, this type of plot is not suitable for displaying

6http://numpy.org
7https://matplotlib.org

101

http://numpy.org
https://matplotlib.org

4 Implementation

many different setups in one comprehensible graph. Therefore, a simple line chart is
used to display the median values of several data sets. In order to add information
about dispersion of latency, error bars are added to every marker. In the present
work’s line charts, these indicate an 80 % interval around the median value. Thus,
for every marker, 10 % of the values are bigger than the upper limit of the error bar
and 10 % of the values are smaller than the lower limit.

In the present work, this type of graph first occurs in Figure 5.8.

4.5.2 Processing the VILLASnode node-type benchmark’s
results

As discussed in section 4.3 and depicted in Figure 4.4, the VILLASnode node-type
benchmark results in two files with data: an in and out file. For every sample, the
former includes a generation timestamp, a sequence number, and the actual values of
the sample. Additionally, the latter includes a receive timestamp which is computed
by the receiving instance of the node-type that is being benchmarked.

The VILLASnode node-type benchmark serves two purposes. On the one hand,
there must be a graph that shows the performance of all node-types in one glance
and makes comparison of node-types easy. For this purpose, the line graph from the
previous subsection is well suited.

On the other hand, the benchmark should give a comprehensive insight in the la-
tency distribution and the maxima of a certain node-type. For this purpose, the his-
togram from subsection 4.5.1 is better suited. However, as described in section 4.3,
these graphs should also provide information about the limitations of node-types.
Not all node-types will be limited to the same maximum frequency. Therefore, the
graph should provide additional information about the missing samples in the in
and out file. By comparing these files, it can be determined if samples were not
transmitted by the node-type that was tested.

3D surface plot To be able to wrap up all information up in one plot, a third type
of graph is introduced: the 3D surface plot. With this type of graph, it is possible to
vary both the message size and sample generation rate, whilst still displaying all data
in a comprehensible manner. In addition to the median latencies of size/generation
rate combinations, an indication of the percentage of missed steps is plotted. In
that way, it is easy to identify which combinations were detrimental for the sample
generation.

In the present work, this type of graph first occurs in Figure 5.11.

102

5 Evaluation
This chapter discusses the results of the previously presented benchmarks. Sec-
tion 5.1 starts with an evaluation of the custom one-way HCA benchmark from
section 4.1. After these results have been analyzed, section 5.2 will compare them
to the results of ib_send_lat of the OFEDTM Performance Test package. Subse-
quently, section 5.3 discusses the several VILLASnode node-types that were bench-
marked.

Table 5.1 lists the hardware, the operating system, the OFEDTM stack version,
and the VILLASnode version that were used for all benchmarks. Fedora was selected
as OS because of its support for the tuned daemon (subsection 2.4.5) and because of
its easy-to-set-up support for PREEMPT_RT-patched kernels (section 7.1). At the
time of writing the present work, the chosen Fedora and kernel version was the
latest combination that was seamlessly supported by this version of the Mellanox®
variant of the OFEDTM stack.

Table 5.1: Dell PowerEdge T630 test system for benchmarks.

CPU 2× Intel® Xeon® E5-2643 v4, 20 MiB cache, 3.40 GHz base frequency
Chipset Intel® C610
RAM 32 GB, DDR-4 2400 MHz, ECC buffered
Motherboard Dell PowerEdge T630 System Board NT78X
Storage Intel ® SSD DC P3700 Series, PCI-e (Gen 2) ×8, 400 GB
HCA 2× Mellanox® ConnectX®-4 MT27700, PCI-e (Gen 3) ×16, 100 Gbit/s
Physical link 0.5 m Mellanox® MCP100-E00A Passive copper Cable, 100 Gbit/s
OS Fedora 27 @ Linux kernel 4.13.9-200
OFEDTM MLNX OFED Linux 4.4-2.0.7.0
VILLASnode Compiled version on commit 0819207c55ef06c7b98ddfe98637eb2b5e1e5d0b

The system was optimized using to the techniques from section 2.4. Unless stated
otherwise, all analyses that are presented in this chapter have been run under these
circumstances. Figure 5.1 shows the distribution of CPUs among cpusets (subsec-
tion 2.4.3). The CPUs in the two real-time-<X> cpusets are limited to the memory
locations in their NUMA node (subsection 2.4.2). These memory locations are also
the same as those the respective HCAs will read from or write to. Finally, the sys-
tem is optimized by setting the tuned daemon to the latency-performance profile
(subsection 2.4.5).

103

5 Evaluation

Thus, all time-critical processes that needed to use the HCAs mlx5_0 and mlx5_1
were run on the CPUs 16, 18, 20, and 22 and 17, 19, 21, and 23, respectively.

Dell PowerEdge T630

Mellanox ConnectX4
mlx5_0 / net-ib0

Mellanox ConnectX4
mlx5_0 / net-ib0

NUMA node 0
(internal distance: 10)

NUMA node 0
(internal distance: 10)

1
6

G
B
,

D
D
R
-
4
,

2
4
0
0

M
H
z

X
e
o
n
®

E
5
-
2
6
4
3

v
4 0

Mellanox ConnectX4
mlx5_0 / net-ib0

2 4 6

8 10 12 14

16 18 20 22

cpuset: system

cpuset: real-time-0
no IRQs to this group

distance: 21distance: 21

Mellanox ConnectX4
mlx5_1 / net-ib1

Mellanox ConnectX4
mlx5_1 / net-ib1

NUMA node 1
(internal distance: 10)

NUMA node 1
(internal distance: 10)

1
6

G
B
,

D
D
R
-
4
,

2
4
0
0

M
H
z

X
e
o
n
®

E
5
-
2
6
4
3

v
4 1

Mellanox ConnectX4
mlx5_1 / net-ib1

3 5 7

9 11 13 15

17 19 21 23

cpuset: system

cpuset: real-time-1
no IRQs to this group

Figure 5.1: The configuration of the Dell PowerEdge T630 from Table 5.1, which was
used in the present work’s evaluations. NUMA specific data is acquired
with numactl.

5.1 Custom one-way host channel adapter benchmark
This section examines different possible configurations of communication over an
InfiniBand network using the benchmark presented in section 4.1. It is intended
to help make a well considered choice regarding the configuration of the InfiniBand
VILLASnode node-type and to get a ballpark estimate of the latency this commu-
nication technology will show in VILLASnode.

5.1.1 Event based polling
The first analyses that were performed were meant to examine the characteristics
of event based polling (Figure 2.21b). Since event channels are designed to be CPU
efficient, in this case, the optimizations from subsection 2.4.3 (“CPU isolation &
affinity”) and subsection 2.4.4 (“Interrupt affinity”) were not applied and Figure 5.1
is not relevant. Instead of improving latency, the aforementioned optimizations had
an adverse effect and actually increased latency. However, the tuned profile latency-
performance and memory optimization techniques were applied nevertheless.

Table 5.2 shows the settings that were used with the custom one-way benchmark.
These settings were introduced in subsection 4.1.2. Gray columns in Table 5.2, and
in all following tables that list benchmark settings, indicate that the settings of

104

5.1 Custom one-way host channel adapter benchmark

these columns were varied during the different runs. Consequently, all settings in
the white columns stayed constant whilst performing the different tests. The graphs
that were generated from the resulting data are shown in Figure 5.2.

Table 5.2: The benchmark’s settings which were used to analyze the latency of mes-
sages sent whilst both the sending and receiving node were waiting for
an event.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.2a RC event event 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.2b UC event event 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.2c UD event event 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.2d RC event event 7 7 send 8000 1 1 × 109 ns tsubm 32 B
Figure 5.2e UC event event 7 7 send 8000 1 1 × 109 ns tsubm 32 B
Figure 5.2f UD event event 7 7 send 8000 1 1 × 109 ns tsubm 32 B

In the first three subfigures of Figure 5.2, 25 · 8000 messages of 32 B were bursted
for RC, UC, and UD. This message size was chosen in most of the following tests
because it is the minimum size of a message in the VILLASnode InfiniBand node-
type. Every sample that is sent from one VILLASnode InfiniBand node to another
contains at least one 8-byte value and always carries 24 B of metadata.

The first thing that catches the eye are the relatively high median latencies (equa-
tion (4.1)) of all service types: t̃RC

lat = 3608 ns, t̃UC
lat = 3598 ns, and t̃UD

lat = 3389 ns.
These were caused by the event channels that were used for synchronization: with
abovementioned settings, the benchmark waits until a read() system call returns
before it tries to poll the completion queue. Therefore, in the meantime, other pro-
cesses can be scheduled onto the CPU and it will take a certain amount of time to
wake the benchmark up again. So, event based polling results in a lower CPU uti-
lization compared to busy polling, but, in return, yields a higher latency.

Maxima The maximum latencies that can be seen were mainly caused by initial
transfers immediately after the process started or after a period of hibernation. This
is sometimes referred to as the warm up effect. Potential solutions for this problem
are introduced in section 7.1.

The custom one-way benchmark includes another potential cause for latency max-
ima. As mentioned in subsection 4.1.1, the function that measures and saves the
receive timestamps (Listing 4.3) lies in the time-critical path. The worst case situa-
tion, in which the two memory regions were only initialized by mmap() but were not
yet touched and thus allocated, was examined. This caused maxima of more than
700 µs. When the pages were present in the virtual memory, the latency of both
save operations was determined to be approximately 40 ns together.

105

5 Evaluation

Thus, in order to make full use of the capabilities and low latencies of InfiniBand,
it is important to carefully pick the operations that lie in the datapath.

Minima The small peaks at the left side of the graphs, between approximately
900 ns and 2900 ns, were caused by how this benchmark implements event based
polling. Figure 2.21b already showed that after a completion channel notifies the
process that a new CQE is available, the CQ must be polled with ibv_poll_cq() to
acquire CQEs. After polling, this benchmark does not immediately return control
to ibv_get_cq_event(); rather it tries to poll again to see if new messages arrived
in the meantime. If this was the case, these messages did not have to wait until a
read() system call returned before they got processed, for that reason, their latency
was lower.

Sent confirmations Subsection 2.2.2 already discussed at which moment CQEs at
the send side are generated. In case of a reliable connection (Figure 5.2a), entries
showed up in the completion queue when a message was delivered to a remote CA
and when that CA acknowledged that it received the message. Naturally,

tcomp
lat = tcomp − tsubm > trecv − tsubm = tlat (5.1)

was almost certainly true for every message that was sent.
This was different for the unreliable service types (UC and UD, Figure 5.2b and

Figure 5.2c), where the HCA is only responsible for sending a message. Hence, in
these cases, the HCA generated a CQE immediately after a message was sent. Thus,
for more messages,

tcomp
lat < tlat (5.2)

was true. In Figure 5.2b, this cannot be identified yet, but the difference between
the median values t̃comp

lat and t̃lat is getting smaller. For messages that were sent as
unreliable datagrams, equation (5.2) usually holds, and in Figure 5.2c,

t̃comp
lat < t̃lat (5.3)

is even true.

Comparison of the service types It can be seen that the median latencies of the
unreliable service types were barely different from the median latency of the reliable
connection. With 3598 ns and 3521 ns, the median latencies of UC and UD were
just slightly lower than the median latency of 3608 ns of the RC service type. As
expected, this was caused by the absence of acknowledgment messages between the
two channel adapters. However, the variability of the three service types differed.
With regards to tlat, UD had the highest (tlat > 10 000 ns in 0.1665 % of the cases)
and UC the lowest (tlat > 10 000 ns in 0.0595 % of the cases) dispersion. In the
remainder of this section, 10 000 ns and 10 µs will be used interchangeably with
regards to the significant figures.

106

5.1 Custom one-way host channel adapter benchmark

(a)

0
100

0
200

0
300

0
500

0
600

0
700

0
800

0
900

0
100

00360
8
389

1

latencies [ns]

100

101

102

103

104

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.2465% (max: 23931.0 ns)
tcomp tsubm>10000ns: 0.1000% (max: 22820.0 ns)

(b)

0
100

0
200

0
300

0

400
0 500

0
600

0
700

0
800

0
900

0
100

00359
8

368
7

latencies [ns]

100

101

102

103

104

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0445% (max: 22605.0 ns)
tcomp tsubm>10000ns: 0.0595% (max: 27571.0 ns)

(c)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00338
9

352
1

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0700% (max: 24488.0 ns)
tcomp tsubm>10000ns: 0.1665% (max: 25117.0 ns)

(d)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
900

0
100

00788
7

797
9

latencies [ns]

100

101

102

fr
eq

ue
nc

y

trecv tsubm>10000ns:18.4375% (max: 23228.0 ns)
tcomp tsubm>10000ns: 8.2750% (max: 30176.0 ns)

(e)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
900

0
100

00795
9

966
0

latencies [ns]

100

101

102

fr
eq

ue
nc

y

trecv tsubm>10000ns:48.8375% (max: 32528.0 ns)
tcomp tsubm>10000ns: 9.8375% (max: 109906.0 ns)

(f)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
100

00855
4
884

9

latencies [ns]

100

101

102

fr
eq

ue
nc

y

trecv tsubm>10000ns:16.6000% (max: 26609.0 ns)
tcomp tsubm>10000ns:19.7000% (max: 51172.0 ns)

trecv tsubm tcomp tsubm

Figure 5.2: Results of the one-way benchmark with the settings from Table 5.2.
These were used to analyze latencies with event based polling.

107

5 Evaluation

Intermediate pauses The last three subfigures of Figure 5.2 show the results of
the same test, but with an intermediate pause of 1 000 000 000 ns (1 s) and with just
1 · 8000 messages per run. One can see that the latency almost doubled. The pause
of 1 s was long enough for the OS to swap out the waiting process, and it took a
considerable amount of time to re-activate the process after the read() system
call returned. Furthermore, the peaks at the left side of the graphs completely
disappeared because now there could never be a second entry in the CQ after the
first entry was acquired.

5.1.2 Busy polling
Event based polling is suitable for semi-time-critical applications in which minimal
CPU utilization outweighs maximum performance and thus minimal latency. How-
ever, if minimal latency is the topmost priority, busy polling (Figure 2.21a) should
be used.

To be able to compare apples to apples, the settings in Table 5.3 are very much
alike those in Table 5.2, but with a different polling mode. Since busy polling is a
CPU intensive task, all tests were performed in the optimized environment that was
presented at the beginning of this chapter. The results of the tests are displayed in
Figure 5.3.

Table 5.3: The benchmark’s settings which were used to analyze the latency of mes-
sages sent whilst both the sending and receiving node were busy polling.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.3a RC busy busy 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.3b UC busy busy 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.3c UD busy busy 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.3d RC busy busy 7 7 send 8000 1 1 × 109 ns tsubm 32 B
Figure 5.3e UC busy busy 7 7 send 8000 1 1 × 109 ns tsubm 32 B
Figure 5.3f UD busy busy 7 7 send 8000 1 1 × 109 ns tsubm 32 B

In the first three subfigures of Figure 5.3, again, 25 · 8000 messages of 32 B were
bursted for RC, UC, and UD. It is immediately visible that the median latencies
t̃RC
lat = 1269 ns, t̃UC

lat = 1251 ns, and t̃UD
lat = 1273 ns are approximately 65 % lower

than the same latencies for event based polling. This is in line with the findings
of MacArthur and Russel [MR12], who reported a decrease of almost 70 % in their
work.

Since the completion queues on the send side were also busy polled, their latencies
also went down. Now, equation (5.2) holds for both unreliable service types. Note

108

5.1 Custom one-way host channel adapter benchmark

that it could be, depending on the use case, beneficial to busy poll the receive CQ
but to rely on a completion channel that is bound to the send queue. In that way,
less CPU cores are fully utilized by busy polling, but low latencies are achieved
between the sending and receiving node anyway. This approach would naturally
result in:

tcomp
lat � tlat, (5.4)

and is suitable for applications that do not need to release the send buffers virtually
instantaneous (subsection 3.3.2 & subsection 3.3.3).

Maxima The maximum latencies did not decrease with the same proportions as
the median latencies, but still notably. With regards to max tlat, the results for the
reliable service type decreased with approximately 14 % and for the unreliable service
types with approximately 36 %. The main reason for the maxima was likely the same
as for event based polling: the warm up effect caused peaks at the beginning of
the transmission. This conjecture is strengthened by the tests that were done with
an intermediate pause of 1 s. For these runs, the yielded maximum latencies were
only slightly lower, which indicates that the maxima were not caused by congestion
but rather by the scheduling of the polling process. After all, the tests that were
performed with an intermediate pause of 1 s between transmissions are unlikely to
have been subject to congestion.

Minima Latency minima as could be seen with event based polling could not arise
here. This polling mode polls continuously all the time, so no peaks can arise because
of short periods of time during which another polling mode was used.

Variability The number of messages for which it took more than 10 µs to arrive
at the receiving host was almost one order of magnitude lower for the RC and
UD service types, and approximately 5 times lower for the UC service type. This
considerably reduced variability naturally implies a higher predictability. When
sending messages in an environment that is based on busy polling, the maximum
latency can be estimated with more certainty.

Intermediate pauses This shows another important difference between event based
polling and busy polling. Whereas the runs with event based polling showed more
than double the latency when intermediate pauses occurred between transfers, runs
that relied on busy polling showed a much smaller difference. Latencies of tests
with intermediate pauses were about 20 % higher than latencies of tests without any
pauses when busy polling was applied. The same comparison for tests that relied
on event based polling yielded a difference of 120 %.

Although the median latencies with intermediate pauses when busy polling were
substantially better than when waiting for an event, they were still higher than
anticipated. Since the process continuously polled the completion queue, and the
operating system should thus not have suspended it, it was expected that t̃lat would

109

5 Evaluation

(a)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00126
9
149

8

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0130% (max: 12995.0 ns)
tcomp tsubm>10000ns: 0.0130% (max: 19545.0 ns)

(b)

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00112
0

125
1

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0020% (max: 16094.0 ns)
tcomp tsubm>10000ns: 0.0125% (max: 17283.0 ns)

(c)

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00113
0

127
3

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0000% (max: 8762.0 ns)
tcomp tsubm>10000ns: 0.0125% (max: 17530.0 ns)

(d)

0
100

0

200
0 300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00153
4

167
0

latencies [ns]

100

101

102

103

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0250% (max: 10988.0 ns)
tcomp tsubm>10000ns: 0.0250% (max: 16048.0 ns)

(e)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00126
1
152

1

latencies [ns]

100

101

102

103

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0000% (max: 8522.0 ns)
tcomp tsubm>10000ns: 0.0125% (max: 16263.0 ns)

(f)

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00128
8
159

4

latencies [ns]

100

101

102

103

fr
eq

ue
nc

y

trecv tsubm>10000ns: 0.0000% (max: 8697.0 ns)
tcomp tsubm>10000ns: 0.0125% (max: 16028.0 ns)

trecv tsubm tcomp tsubm

Figure 5.3: Results of the one-way benchmark with the settings from Table 5.3.
These were used to analyze latencies with busy polling.

110

5.1 Custom one-way host channel adapter benchmark

be lower for scenarios with less traffic on the link. However, for these cases, t̃lat was
slightly higher in Figure 5.3.

It was first suspected that Active State Power Management (ASPM), which is
described in the PCI-e Base Specifications [10], caused this additional latency. This
technique sets the PCI-e link to a lower power state when the device it is connected
to—which would in this case be the HCA—is not used. However, when the tests
from Table 5.3 were repeated with ASPM explicitly turned off, the results remained
the same.

The second suspicion was related to power saving levels of the CPU: the so-
called C-states. After ensuring that all power savings were turned off—i.e., C0
was the only allowed state—a maximum response latency of 0 µs was written to
/dev/cpu_dma_latency. This virtual file forms an interface to the Power Man-
agement Quality of Service (PM QoS),1 and writing ‘0’ to it expresses to the OS
that the minimum achievable DMA latency is required. However, this did also not
improve t̃lat.

Nevertheless, busy polling is still the more suitable technique for real-time appli-
cations. The next sections will explore other techniques to reduce the latency even
more. For the methods that are likely to have a similar impact on the different ser-
vice types, only the UC service type was used for the sake of brevity. The unreliable
connection was chosen because it showed the best results so far.

5.1.3 Differences between the submit and send timestamp

This subsection explores the difference between the moment a work request is sub-
mitted to the send queue and the moment the HCA actually sends the data. The
feature of the benchmark that measures this difference is based on Listing 4.4: the
sending node keeps updating the timestamp until the HCA copies the data to one
of its virtual lanes.

Table 5.4: The benchmark’s settings which were used to analyze the difference in
time between the moment that a Work Request (WR) is submitted to the
Send Queue (SQ) and the moment the corresponding message is actually
sent.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.4 UC busy busy 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.4 UC busy busy 7 7 send 8000 20 0 ns tsend 32 B

1https://www.kernel.org/doc/Documentation/power/pm_qos_interface.txt

111

https://www.kernel.org/doc/Documentation/power/pm_qos_interface.txt

5 Evaluation

Table 5.4 shows the settings of the two tests that were performed. The results of
both are plotted in Figure 5.4.

In the results of this test, and in the results of all following tests of this type,
all data regarding tcomp

lat is completely omitted. In the previous two subsections,
it could be seen that settings that affect the receive CQ will affect the send CQ
in a very similar manner. Hence, continuing to plot it would have been redundant.
Rather, two similar data sets that must be compared—e.g., (trecv −tsend) and (trecv −
tsubm)—have been plotted in the same graph.

As it turns out, approximately(
1 − 726 ns

1253 ns

)
· 100 % ≈ 42 % (5.5)

of the time that was needed to send a message from one node to another node
was spent before the HCA actually copied the data. This timespan includes the
notification of the HCA, but also the accessing and copying of the data from the
hosts’s main memory to the HCA’s internal buffers. Note that this test did not
measure the time the data spent in the sending node’s HCA since it is not possible
to update the timestamp as soon as it resided in the HCA’s buffers.

This relatively long timespan suggests that the memory access is a bottleneck.
The next subsection will discuss a possible solution for small messages.

0
100

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00726 125
3

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tsend>10000ns: 0.0135% (max: 14724.0 ns)
trecv tsubm>10000ns: 0.0135% (max: 19960.0 ns)

trecv tsend trecv tsubm

Figure 5.4: Results of the one-way benchmark with the settings from Table 5.4.
These were used to analyze the difference between tlat and tsend

lat .

5.1.4 Inline messages
Equation (4.3) in subsection 4.1.1 already suggested that the difference between t̃lat

and t̃send
lat could be an approximation of the latency decrease that can be achieved by

using the inline flag that some InfiniBand HCAs—among them the Mellanox® Con-
nectX®-4—support. By setting this flag, introduced in subsection 2.3.1, relatively
small messages (. 1 KiB) will directly be included in a work request. Accordingly,
the HCA’s DMA does not need to access the host’s main memory to acquire the
data when it becomes aware of the submitted WR. This suggests that posting small

112

5.1 Custom one-way host channel adapter benchmark

messages inline will eradicate a part of the overhead that was discussed in the last
subsection.

Table 5.5 shows which settings were used with the one-way benchmark to analyze
this difference. They are almost identical to the settings from Table 5.4, but instead
of varying the timestamp that was taken (tsubm/tsend), the inline mode was varied.
The results are depicted in Figure 5.5.

Table 5.5: The benchmark’s settings which were used to analyze the influence of
sending messages inline on the latency.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.5 UC busy busy 7 7 send 8000 20 0 ns tsubm 32 B
Figure 5.5 UC busy busy 3 7 send 8000 20 0 ns tsubm 32 B

Being 1264 ns, the median latency for the regularly submitted case was almost
identical to the latency in Figure 5.4, which makes it very suitable for comparison.
In subsection 5.1.3, it was determined that about 42 % of the time was lost before
the HCA actually copied the data to its own buffers. The graph shows that messages
that were submitted with the inline flag had a(

1 − 906 ns
1264 ns

)
· 100 % ≈ 28 % (5.6)

lower latency than regularly submitted messages.
Thus, apparently, the additional memory access the HCA had to perform when a

32 B message was not directly included in the work request was accountable for 28 %
of the latency. Hence, if possible, it is favorable for latency to include data directly in
the work request. Furthermore, as mentioned in subsection 2.3.1, another advantage
is the fact that the used buffers can be released immediately after submitting the
WR.

5.1.5 RDMA write compared to the send operation
Table 2.5 presented the different operations which are supported for the different
service types. So far, all discussed tests relied on send with immediate. The sec-
ond suitable operation to transfer a message to a remote host which also supports
an additional 32-bit header as identifier is RDMA write with immediate. In the re-
mainder of this chapter, for the sake of brevity, this operation is simply referred to
as RDMA write.

Table 5.6 describes the settings that were used with the one-way benchmark to
compare the send operation with RDMA write. Note that UD is not included, since

113

5 Evaluation

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00906 126
4

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tinl.subm >10000ns: 0.0150% (max: 18988.0 ns)
trecv treg.subm >10000ns: 0.0145% (max: 21629.0 ns)

trecv tinl.subm trecv treg.subm

Figure 5.5: Results of the one-way benchmark with the settings Table 5.5. These
were used to analyze the difference between messages that are submitted
regularly (treg.

subm) and that are submitted inline (tinl.
subm).

Table 5.6: The benchmark’s settings which were used to analayze the effect on la-
tency of sending messages through memory semantics instead of channel
semantics.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.6a RC busy busy 3 7 send 8000 20 0 ns tsubm 32 B
Figure 5.6a RC busy busy 3 7 rdma 8000 20 0 ns tsubm 32 B
Figure 5.6b UC busy busy 3 7 send 8000 20 0 ns tsubm 32 B
Figure 5.6b UC busy busy 3 7 rdma 8000 20 0 ns tsubm 32 B

none of the RDMA operations support it. The results of the tests are depicted in
Figure 5.6.

In these results, the RDMA write operation seems slower than the send operation.
However, a few remarks have to be made. First, the maximum latency and the
variability of the RDMA transfers were lower. In case of the UC service type,
sending messages with RDMA resulted in 5× less messages with a latency greater
than 10 µs. (In some iterations of the tests, reductions up to 25× could be seen.)
So, although the median latency was slightly higher for RDMA, the lower variability
makes it a more predictable service type.

Secondly, this test relied on the RDMA write with immediate, not RDMA write.
The actual RDMA write operation is probably a little faster, but without synchro-
nization there is no way for a process on the receiving side to know when data is
available. Since the only other way of synchronizing would be using an additional
send operation, RDMA write with immediate is the fastest way of sending data with
RDMA and signaling to the receiving node that data is available.

114

5.1 Custom one-way host channel adapter benchmark

(a)

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00927
971

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv trdmasubm>10000ns: 0.0100% (max: 10660.0 ns)
trecv tsendsubm>10000ns: 0.0125% (max: 17919.0 ns)

(b)

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00910
968

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv trdmasubm>10000ns: 0.0025% (max: 16023.0 ns)
trecv tsendsubm>10000ns: 0.0130% (max: 17386.0 ns)

trecv trdmasubm trecv tsendsubm

Figure 5.6: Results of the one-way benchmark with the settings from Table 5.6.
These were used to analyze the difference between the RDMA write
with immediate and send with immediate operation.

5.1.6 Unsignaled messages compared to signaled messages
Subsection 2.3.1 discussed that the OFEDTM verbs allow to submit WRs to the
SQ without generating a notification. Thereafter, subsection 4.2.4 presented how
this technique was implemented in the node-type’s write-function. This was done
to prevent file structures from unnecessarily rippling through the completion queue
into the write-function, to subsequently be discarded there. Since MacArthur and
Russel [MR12] only observed small performance increases but recommended send-
ing unsignaled for inline messages, the following tests were intended to review the
performance increase in the present work’s environment.

Table 5.7 shows the settings that were used with the one-way benchmark during
these tests and Figure 5.7 shows the resulting latencies. The median latency t̃sig.

lat of
the messages that were sent inline with signaling approximately corresponds to the
number from Figure 5.5. Thus, since Figure 5.7 shows that the median latency of
unsignaled messages is:

t̃uns.
lat ≈ 0.87 · t̃sig.

lat , (5.7)

it can be concluded that turning signaling off yields a noteworthy performance in-
crease. By signaling only shortly before the send queue overflows, a decrease in
latency of almost 13 % can be seen.

Because previous works [MR12; LR14] were inclined to use RDMA write over
send operations, the same tests as in Table 5.7 were repeated with RDMA write as
operation mode. Similar to the results in Figure 5.6, the latency for messages that

115

5 Evaluation

Table 5.7: The benchmark’s settings which were used to analyze the influence of
Completion Queue Entry (CQE) creation on latency for send operations.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure 5.7 UC busy busy 3 7 send 8000 20 0 ns tsubm 32 B
Figure 5.7 UC busy busy 3 3 send 8000 20 0 ns tsubm 32 B

were sent over RDMA was worse than for those that were sent normally. However,
the relative increase in performance caused by the disabling of the signaling was,
being a bit more than 12 %, almost identical to the increase in Figure 5.7.

The settings and the results of these tests can be seen in appendix F.1.

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00786
899

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tuns.subm >10000ns: 0.0125% (max: 17403.0 ns)
trecv tsig.subm >10000ns: 0.0125% (max: 20521.0 ns)

trecv tuns.subm trecv tsig.subm

Figure 5.7: Results of the one-way benchmark with the settings from Table 5.7 to
analyze the difference in latency between messages that did and did not
cause a Completion Queue Entry (CQE). The send operation mode was
used in this test.

Based on the results from the previous subsections, t̃lat = 786 ns seems to be the
lowest achievable median latency for 32-byte messages. This confirms the imple-
mentation of the VILLASnode node-type that was presented in subsection 4.2.3
and 4.2.4. In the communication between InfiniBand node-types, the send oper-
ation mode is used, when under a configurable threshold messages are sent inline,
and a CQE for inline-messages is only generated when a counter reaches a config-
urable threshold.

Although sub-microsecond latencies could easily be achieved in the used environ-
ment, there was still a considerable deviation from the latencies MacArthur and
Russel [MR12] observed, which had minima around 300 ns. A possible explanation
for this could be the number of used buffer. The objective of this benchmark was
to find the best fit for a VILLASnode node-type. Because a node-type needs a rel-
atively large pool of buffers to be able to process a lot of small samples with high

116

5.1 Custom one-way host channel adapter benchmark

frequencies, this benchmark also assumed a large pool of buffers. MacArthur and
Russel, however, observed that latencies in their environment started to increase
when more than 16 buffers were used.

5.1.7 Variation of message size

All aforementioned tests assumed an idealized situation with 32-byte messages. Usu-
ally, the packets in a real-time co-simulation framework will be a few powers of two
larger. Table 5.8 shows the settings that were used with the one-way benchmark to
explore the influence of message size on the latency.

The tests are grouped in three categories: Figure 5.8a exclusively shows the RC,
Figure 5.8b the UC, and Figure 5.8c the UD service type. Furthermore, an upward
pointing triangle and a dark shade indicate the send operation, and a downward
pointing triangle and a light shade an rdma write operation. Black shades were
used for messages that were sent normally and blue shades for messages that were
sent inline.

Whenever possible, tests were performed with messages ranging from 8 B to
32 KiB. However, inline work requests and the UD service type do not support
messages that big; the adjusted ranges are listed in Table 5.8.

Table 5.8: The benchmark’s settings which were used to analyze the influence of
message size on the latency, with i ∈ [0, 12], j ∈ [0, 7], and k ∈ [0, 9].

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p

m
es

sa
ge

siz
e

Figure 5.8a N— RC busy busy 7 7 send 8000 10 0 ns tsubm 8 · 2i B
Figure 5.8a N— RC busy busy 3 7 send Minl

1 10 0 ns tsubm 8 · 2j B
Figure 5.8a H— RC busy busy 7 7 rdma 8000 10 0 ns tsubm 8 · 2i B
Figure 5.8a H— RC busy busy 3 7 rdma Minl

1 10 0 ns tsubm 8 · 2j B
Figure 5.8b N— UC busy busy 7 7 send 8000 10 0 ns tsubm 8 · 2i B
Figure 5.8b N— UC busy busy 3 7 send Minl

1 10 0 ns tsubm 8 · 2j B
Figure 5.8b H— UC busy busy 7 7 rdma 8000 10 0 ns tsubm 8 · 2i B
Figure 5.8b H— UC busy busy 3 7 rdma Minl

1 10 0 ns tsubm 8 · 2j B
Figure 5.8c N— UD busy busy 7 7 send 8000 10 0 ns tsubm 8 · 2k B
Figure 5.8c N— UD busy busy 3 7 send Minl

1 10 0 ns tsubm 8 · 2j B

1The maximum size Minl of a QP for a given message size is dependent on the HCA. In case of
the Mellanox ConnectX®-4, each queue of a QP could hold 8000, 8000, 8000, 6552, 5461, 4096,
and 2730 WRs for a message size of 8 B, 16 B, 32 B, 64 B, 128 B, 256 B, and 512 B, respectivly.

117

5 Evaluation

Constant latency (8 B–256 B) As can be seen in Figure 5.8, all t̃lat of messages
that were smaller than 256 B were virtually the same. The only difference is that,
as expected from equation (5.6), messages that were sent inline have a median
latency that is approximately 28 % lower than messages that were sent normally.
All these t̃lat were around the values that could be seen for 32 B messages in Fig-
ure 5.3, 5.5, and 5.6. This is similar to MacArthur and Russel’s results [MR12]. In
their publication, they found that messages smaller than 1024 B have a somewhat
constant latency. In the present work’s finding this is only true for messages up to
approximately 256 B.

For all these sizes, the variance of the latencies is minimal. The error bars in
Figure 5.8 indicate where the boundary to the upper and the lower 10 % of the
values lie.

Increasing latency (256 B–32 KiB) When the message size exceeded 256 B, t̃lat

started to gradually go up and the variance increased for messages that were sent
normally. At 256 B, t̃lat for messages that were sent inline even exceeded the median
latency of messages that were sent normally. Because not only the message size but
also the burst size changed for the blue lines, the inline tests were repeated with a
fixed burst size of 2730 messages per burst (appendix F.2). Since this steep slope
between 128 B and 256 B is still present for fixed burst sizes, it can be concluded
that—although the HCA allows it—sending data inline is not always favorable.

The increasing latency of inline messages around 256 B is in line with the findings
of MacArthur and Russel [MR12]. In their work, they claim that this latency step
was caused by their adapter’s cache line size, which happened to be 256 B. The HCA
that was used in the present work, however, had a cache line size of a mere 32 B.
Thus, according to their findings, messages that were equal to or bigger than 32 B
should have had latencies which were substantially bigger than latencies of messages
that were smaller than 32 B. However, this was not the case, as can be seen in
Figure 5.8. This leads to the conclusion that the increase is not solely caused by the
cache line size.

Decreased variability (4096 B) The second aspect that catches the eye is located
at 4096 B, which also happened to be the set MTU in these tests. For all service
types—even for UD, which does only support messages up to the MTU—the vari-
ability of the latency decreased for messages bigger than or equal to 4096 B. Thus,
although the median latency continued to go up, the predictability of the latency
also rose.

Further peculiarities There was no meaningful difference between channel seman-
tics and memory semantics with immediate data. Although the send operation was
always slightly better in terms of median latency, the operation that best suits the
requirements of the application should be used.

118

5.2 OFED’s round-trip host channel adapter benchmark

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

0

1000

2000

3000

4000

5000

6000
t la

t
[n

s]

(a) RC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(b) UC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(c) UD

send
rdma write

send (inline)
rdma write (inline)

Figure 5.8: Results of the one-way benchmark with the settings from Table 5.8.
These were used to analyze the influence of message size on the latency.
While a triangle indicates t̃lat for a certain message size, the error bars
indicate the upper and lower 10 % of tlat for that message size.

To make sure that the increased median latency was not caused by congestion
control (subsection 2.2.6) all tests from Table 5.8 were repeated with an intermediate
pause of 5500 ns between calls of ibv_post_send(). As appendix F.3 shows, this
did not influence the median latency.

5.2 OFED’s round-trip host channel adapter
benchmark

This section analyzes some assumptions that were made in previous sections. In the
first subsection, the results of the round-trip benchmark ib_lat_send will be com-
pared to the results from subsection 5.1.7. Then, in the second and third subsection,
the influence of the MTU and the QP type on latency will be examined.

119

5 Evaluation

5.2.1 Correspondence between round-trip and one-way
benchmark

Table 5.9 shows the results for the first tests that were performed with ib_send_lat.
The median latencies in Table 5.9 approximately correspond to the latencies for
the same test in Figure 5.8. It stands out that the same leap in latency between
128 B and 256 B that could be seen in Figure 5.8, also occurred in these results. To
rule out that this leap was solely caused by the fact that messages were not sent
inline anymore at 256 B, the test was also performed with the inline threshold set
to a higher value. In this second test, the leap between 128 B and 256 B turned out
to be even higher.

Table 5.9: min tlat, t̃lat, and max tlat measured with ib_send_lat. All communica-
tion went over an RC RDMA CM QP and was sent with the normal send
operation. Every test contained 1000 iterations and messages that were
smaller than 188 B were sent inline.

round-trip benchmark one-way benchmark
message size [B] min tlat [µs] t̃lat [µs] max tlat [µs] t̃lat [µs]

8 0.80 0.83 2.37 0.94
16 0.79 0.83 4.06 0.91
32 0.79 0.82 4.29 0.91
64 0.82 0.86 2.20 1.00

128 0.86 0.90 1.73 1.01
256 1.24 1.30 2.05 1.36
512 1.31 1.35 2.56 1.42

1024 1.45 1.49 2.78 1.63
2048 1.71 1.75 2.87 2.29
4096 2.22 2.27 2.87 2.93
8192 2.55 2.61 3.97 3.62

16 384 3.14 3.21 4.54 4.58
32 768 4.48 4.59 5.78 5.96

Difference in maximum latencies A substantial difference between the results of
the round-trip benchmark and the custom one-way benchmark were the maxima.
This was, in all likelihood, caused by the used sample size. The description on
the OFEDTM Performance Tests’ Git2 states that “setting a very high number of

2https://github.com/linux-rdma/perftest

120

https://github.com/linux-rdma/perftest

5.2 OFED’s round-trip host channel adapter benchmark

iteration may have negative impact on the measured performance which are not
related to the devices under test. If [. . .] strictly necessary, it is recommended to use
the -N flag (No Peak).” Therefore, the default setting of the round-trip benchmark
was set to 1000 messages per test. Since the custom one-way benchmark was meant
to mimic the behavior of InfiniBand hardware in VILLASnode—which would also
burst large amounts of small messages at high frequencies—this hint was ignored
in the custom benchmark. Every marker in Figure 5.8 includes between 27 300 and
80 000 time deltas.

Foreseeing the analysis of the InfiniBand node-type, the one-way benchmark gave
a more realistic view of the way the InfiniBand adapters would behave in VIL-
LASnode. For example, all plots in appendix F.4 show low median latencies, how-
ever, also latency peaks which are much higher than the median values.

Furthermore, the median latencies the round-trip benchmark yielded were marginally
lower than the ones yielded by the custom one-way benchmark. This difference was
probably caused by the abovementioned effect as well.

5.2.2 Variation of the MTU

Crupnicoff, Das, and Zahavi [CDZ05] report that the selected MTU does not affect
the latency. Since the MTU can affect the latency in other technologies—such as
Ethernet—this claim was examined. With ib_send_lat, it is fairly easy to change
the MTU. All results of this test are displayed in Table 5.10. Since the UC service
type is not officially supported by the RDMA CM QP, only results for the RC and
UD service type are shown.

The table shows that no extraordinary peaks occurred. The only latency that
stands out is marked red. However, since the difference is not substantial, and since
this is the only occurrence of such a peak, it can be assumed that the MTU indeed
does not affect latency.

5.2.3 RDMA CM queue pairs compared to regular queue pairs

In all implementations presented in the present work, it was assumed that the per-
formance of a regular QP and a QP that is managed by the RDMA CM is almost
identical. This assumption was evaluated as well.

Table 5.11 shows that the median latency for smaller messages was slightly smaller
for regular QPs. For larger messages, this difference in latency diminished. This
inconsiderable difference, however, does not outweigh the ease that comes with the
RDMA communication manager. To get a latency decrease of less than 7 % (Ta-
ble 5.11’s worst case), a lot of complexity would have to be added to the source
code, in order to efficiently manage the QPs.

121

5 Evaluation

Table 5.10: t̃lat [µs] as reported by ib_send_lat for different service types and mes-
sage sizes with a varying MTU. All communication went over an RDMA
CM QP and was sent with the normal send operation. Every test con-
tained 1000 iterations and messages that were smaller than 188 B were
sent inline.

service type size MTU
256 B 512 B 1024 B 2048 B 4096 B

RC

32 B 0.83 0.81 0.82 0.82 0.83
1 kB 1.58 1.58 1.52 1.60 1.61
4 kB 2.26 2.25 2.25 2.27 2.28

32 kB 4.56 4.58 4.57 4.58 4.57

UD
32 B 0.86 0.87 0.86 0.87 0.86
1 kB 7 7 1.44 1.54 1.45
4 kB 7 7 7 7 2.22

Table 5.11: t̃lat [µs] as reported by ib_send_lat for different service types and queue
pair types with a varying message size. All communication was sent
with the normal send operation. Every test contained 1000 iterations
and messages that were smaller than 188 B were sent inline.

service type QP type message size
32 B 128 B 512 B 2 kB 8 kB 32 kB

RC regular 0.77 0.86 1.31 1.68 2.60 4.56
RDMA CM 0.81 0.90 1.33 1.73 2.57 4.57

UD regular 0.80 0.84 1.26 1.74 7 7

RDMA CM 0.86 0.90 1.31 1.71 7 7

5.3 VILLASnode node-type benchmark
Again, all runs of the benchmark in this section were performed in the optimized
environment as introduced in Figure 5.1 on the host system from Table 5.1.3

Timer of the signal node To find the timer that was best suited for the needs of
the analyses that are discussed in this section, separate tests were performed and

3A small change to the environment had to be made: all tests that are presented in the following
were performed with a customized version of the latency-performance tuned profile. The reason
for this is discussed in the paragraph “Optimized environment” below.

122

5.3 VILLASnode node-type benchmark

their results are presented below. Since the ability to generate samples at high rates
was a requirement for most of the analyses in the remainder of this section, a fixed,
high rate of 100 kHz was set for the tests to analyze the timers. Four tests were
prepared: two with a VILLASnode instance with a timer object that relies on a file
descriptor for notifications (timerfd) and two with a timer that relies on the TSC.
For the former, as can be seen in Table 5.12, more steps were missed at high rates. In
the optimized environment, the file descriptor based implementation missed about
0.68 % of the signals, whereas the TSC based implementation only missed 0.50 % of
the steps. Since the implementation with the least missed steps is preferred—after
all, when steps are missed, the actual rate that is sent to the node-type under test
is lower than the set rate—the TSC was chosen as timer for the following tests.

Appendix F.4 shows the histograms for these four tests, including the missed
steps and an indicator for whether samples were not transmitted by the nodes that
were tested. When comparing the median latencies of the four cases, it becomes
apparent that the timerfd timer affected the measured t̃lat more than the TSC.
Since this means that the benchmark’s results with the TSC better reflect the actual
performance of the node-type under test, this is another advantage of the TSC.
Furthermore, in case of the unoptimized environment, the latency’s variability with
the timerfd timer was considerably worse than in the three other cases.

In later tests, it was also discovered that the TSC did not perform well with
relatively small rates (≤ 2500 Hz). As it turned out, for the minimum rate of 100 Hz,
approximately 8 % of the steps were missed. However, using the the timerfd timer
for these low rates would noticeably skew the results, and a deviation of 8 Hz is
unlikely to influence the latencies of the analyzed nodes. Therefore, the TSC was
also used for these low rates.

Table 5.12: Comparison of the performance of timer functions. All tests were per-
formed with a rate of 100 kHz, with 10 64-bit floating-point numbers
per sample, RC as service type, and with the InfiniBand node-type as
node-type under test. Every test contains 250 000 samples.

optimized environment missed samples
timerfd TSC

7 12085
250000 · 100 % = 4.83 % 3035

250000 · 100 % = 1.21 %
3 1692

250000 · 100 % = 0.68 % 1244
250000 · 100 % = 0.50 %

Optimized environment The tests that were done to analyze the behavior of the
timers also revealed information about the effect of the optimized and unoptimized
environment on latencies. As it turned out, using the latency-performance tuned
profile was detrimental for the latency and the overall performance. This effect oc-
curred regardless of the used environment. For the cases in Figure F.4, median la-

123

5 Evaluation

tencies increased about 700 ns, variability and maxima rose, and the timerfd timer
missed up to 15 % of the steps. Further research has shown that the force_latency
flag (line 6, Listing B.1) caused this problem. Therefore, in all tests that are pre-
sented in the following, a customized version of the latency-performance tuned pro-
file without this flag was used.

Figure F.4 also reveals that running VILLASnode in the optimized environment
was beneficial for latency. However, the difference between both environments was
not tremendous. It is likely that the reason for this is that the testsystem from
Table 5.1 was fully dedicated to the tests that were run on it. In a real life scenario,
the system would be busy with other processes, and the difference in latency for
processes in the shielded cpuset and in the normal pool of CPUs would presumably
be larger.

Configuration of the InfiniBand nodes It was found that the number of buffers
hardly influenced the performance of the InfiniBand node-type. Even MacArthur
and Russel’s “ideal” number of buffers—although impracticable for the purposes of
this real-time framework—were investigated [MR12]. Apart from the fact that such
a small number of buffers made it impossible to send samples bigger than a few byte
at high frequencies, barely any difference in latency could be seen compared to cases
with (a lot) more buffers.

A momentous difference, however, could be seen when the size of the receive
queue and the number of mandatory work requests in the receive queue was varied.
The situation with the lowest latency arose when the size and the number of WRs
was chosen to be just big enough to support the highest combination of generation
rate and message size. For example, in case of Figure F.4d, latency extrema around
262 µs could be seen with this ideal setup. For an arbitrary large number (e.g., a
queue depth of 8192 and 8064 mandatory WRs in the queue), these extrema peaked
at more than 3000 µs. This effect was caused by the way the InfiniBand node-type’s
read-function is implemented and probably occurred shortly after the initialization
of the receiving InfiniBand node. As presented in Figure 4.1, the read-function first
fills the receive queue, before it starts polling the queue and processing the data.
When the threshold is large, it takes a certain amount of time before data can be
processed. However, it is important to keep in mind that a larger receive queue
yields a higher stability because overflows will be less likely.

For the send queue, the opposite is true: in order to signal as little as possible,
the send queue can be as large as the HCA allows it to be. The signaling threshold,
that describes the maximum number of unsignaled WRs before a signaled WR must
be sent, is determined according to equation (1.1) in section 1.2. If one sample is
sent per call of the write-function, which is true for all following tests,

S = DSQ

2 (5.8)

124

5.3 VILLASnode node-type benchmark

follows from equation (1.1). Before running any of the following tests, it was verified
that this threshold indeed yielded the lowest latency. It turned out that any higher
or lower threshold yielded, although marginally, worse latencies.

The settings for the sending and the receiving InfiniBand node can be found in
appendix E. These settings were used in all tests that are presented in this section.

5.3.1 Comparison between InfiniBand service types
This subsection presents the tests that were performed to examine how the different
InfiniBand service types perform within VILLASnode. It solely focuses on the reli-
able connection and on unreliable datagrams since these two service types are offi-
cially supported by the RDMA CM, and thus require no modification of the RDMA
CM library.

Varying the sample generation rate In the first set of tests, the rate with which
samples were generated was varied between 100 Hz and 100 kHz. All tests were per-
formed until 250 000 samples were transmitted. Each sample that was sent contained
8 random 64-bit floating-point numbers. For the reliable connection, this added up
to

8 · 8 B + 24 B = 88 B (5.9)

per message, taking the 24-byte metadata into account. For unreliable datagrams,
this number was

88 B + 40 B = 128 B (5.10)

because the 40-byte GRH of the sending node was attached to every message. Since
the messages were relatively small, they were all sent inline.

Figure 5.9 shows the results the VILLASnode node-type benchmark yielded with
the abovementioned settings. Both service types showed an almost identical behav-
ior, regardless of which rate was set: for both types, t̃lat decreased when the rate
was increased. This is in line with prior observations in subsection 5.1.2, where la-
tency increased when pauses between the transmission of messages were increased.

Characteristic for InfiniBand is the (almost) non-existent latency difference be-
tween messages on reliable connections and unreliable datagrams. Because, as dis-
cussed in section 2.1, reliability is handled in the HCA rather than in the operating
system, it causes less overhead.

All tests for the InfiniBand node-type were only performed for signal generation
rates up to 100 kHz. At higher frequencies, the signal node started to miss more
and more steps. According to the latencies from section 5.1, the sample rate needs to
be a lot higher than 100 kHz before the InfiniBand hardware becomes the bottleneck.
Assuming a message resides about 1000 ns in the InfiniBand stack and network,
rates up to:

1
1000 ns = 1 GHz (5.11)

125

5 Evaluation

100 2500 5000 10000 25000 50000 100000
sample generation rate [Hz]

0

1

2

3

4

t la
t
[µ

s]

RC UD

Figure 5.9: Results the benchmark yields for the InfiniBand node-type with a fixed
message size of 88 B for RC and 128 B for UD. The sample generation
rate was varied between 100 Hz and 100 kHz and for every rate, 250 000
samples were sent.

are theoretically possible with the numbers measured in the previous section.4 How-
ever, two problems arise:

• The refresh rate of the buffers in the receive queue is not indefinitely high.
As described in section 4.2, for its completion queue to be cleared and its
receive queue to be refilled, an InfiniBand node depends on the rate with
which the read-function is invoked. When the QP is chosen to be big enough,
a node should be able to absorb short peaks in the message rate (e.g., 1 GHz)
flawlessly. However, if the rate stays high for an extended amount of time, the
buffers will overflow in the current setup.
More on the theoretically achievable rate in subsection 5.3.2.

• Subsection 4.3.2 described optimizations that were applied to the file node-
type. Even though these optimizations considerably increased the maximum
signal generation rate, rates well above 100 kHz were still not achievable. Con-
sequently, to increase this upper limit, the file node-type should be optimized
further, so that the share it takes in the total datapath decreases.

Varying the sample size In the second set of tests, the generation rate was fixed
to 25 kHz. The message size was varied between 1 and 64 values per sample. This
resulted in messages between 32 B and 536 B for RC and 74 B and 576 B for UD.
Based on the results from Table 5.8 and Figure 5.8, messages smaller than or equal
to 188 B were sent inline.5

4This is only based on the measured time that a message congests the InfiniBand stack and
network; it is assumed that WRs can be submitted to the QPs with this rate.

5Inline sizes that are powers of two are not supported by the Mellanox HCA used in the present
work. The HCA automatically converts it to the closest value that is larger than the set value.
In this case, 188 B is the closest value larger than 128 B.

126

5.3 VILLASnode node-type benchmark

The first observation to be made is the increasing median latency when messages
become bigger than approximately 128 B. This is in line with the findings from
subsection 5.1.7. Secondly, the variability of the reliable connection was consistently
lower than the variability of unreliable datagram. This was not only true for high
rates, but also for lower rates. Finally, it can be observed that the RC service type
had a lower median latency than UD. This is remarkable, and a reason for this could
be the fact that the receiving node’s AH must be added to every work request when
the UD service type is used. Furthermore, the GRH is added to every message that
is sent with the UD service type.

1 2 4 8 16 32 64
number of values in sample

0

1

2

3

4

5

t la
t
[µ

s]

RC UD

Figure 5.10: Results the benchmark yields for the InfiniBand node-type at a fixed
sample generation rate of 25 kHz and a message size that was varied
between 32 B and 536 B for RC and 74 B and 576 B for UD. For every
message size, 250 000 samples were sent.

Varying both the sample size and generation rate Figure 5.11 aims to give a
complete view on the influence of the several possible generation rate and message
size combinations by combining the previously presented tests. Since the reliable
connection shows—although only slightly—the lowest median latencies, this figure
only depicts the measurements for RC. In this test, the generation rate was varied
between 100 Hz and 100 kHz and the number of values in a sample between 1 and
64. All tests were performed until 250 000 samples were transmitted.

Figure 5.11 shows that, in accordance with Figure 5.10, the median latency in-
creased with the message size. Additionally, as can be seen along the rate-axis, a
higher message generation rate corresponded to a lower median latency. This could
also be seen in Figure 5.9.

When the signal node missed more than 10 % of the steps for a particular sample
rate/sample size combination, this is indicated with a red colored percentage in
Figure 5.11. From these numbers, it becomes evident that the file-node was not

127

5 Evaluation

able to process large amounts of data. With tests that missed a substantial amount
of samples, a threshold T can be approximated to:

T =
(

1 − Pmissed

100 %

)
· Ssample · fsignal [B] · [Hz] = [B/s], (5.12)

where Pmissed is the percentage of missed samples, Ssample is the sample size, and
fsignal the set signal generation rate. In case of the VILLASnode node-type bench-
mark, this value was approximately 20 MiB/s. This is, nevertheless, only a rough
estimation; the signal generation rate probably has a higher impact on the thresh-
old than the sample size.

rate

100
2500

5000
10000

25000
50000

100000
num

ber
 of

 va
lue

s i
n s

amp
le

1
2

4
8

16
32

64

t la
t
[µ
s]

0

1

2

3

4

5

6

8%
3%

0%
0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0% 0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
22%

8%

3%
0%

0%
0%

10% 55%

2.0

2.5

3.0

3.5

4.0

t la
t
[µ

s]

min tlat: 1.706 µs max tlat: 4.915 µs

% of samples missed by signal generator

Figure 5.11: The influence of the message size and generation rate on the median
latency between two InfiniBand nodes that communicate over an Reli-
able Connection (RC).

The fact that up to 8 % of the steps were missed at low rates with the TSC was
already mentioned at the beginning of this section. Since these rates are non-critical
for the node-types that were analyzed, it is improbable that a difference of 8 Hz
in case of a set rate of 100 Hz, and 75 Hz in case of 2500 Hz, will noticeably affect
the median latency. Using an alternative timer, however, would have considerably
skewed the latencies in that range.

Appendix F.5 shows the same graphs for UC and UD, respectively. Both modes
show a very similar behavior to the RC service type. As observed before, UD shows
slightly higher median latencies than RC. UC, on the other hand, shows slightly
lower median latencies. This backs the suspicion that was raised earlier, on why
UD was slightly slower than RC. Regarding latency, UC does not have three major
disadvantages of both types: it does not need to guarantee delivery of a message,

128

5.3 VILLASnode node-type benchmark

but it does also not require an AH with every WR and does not need to add the
40 B GRH to every message.

Thus, the smallest median latencies among the service types that are officially
supported by the RDMA CM were observed for the reliable connection. When
varying both the message size and generation rate, the minimum latency of about
1.7 µs was observed for high rates and low message sizes. The maximum latency was
observed for high rates and low message sizes and was approximately 4.9 µs.

5.3.2 Comparison to the zero-latency reference

The first comparison to be done is between the InfiniBand node-type and the shmem
node-type. The latter uses the POSIX shared memory API to enable communication
between nodes over shared memory regions [Ker10]. Because the latency between
two shmem nodes will approximately be the time it takes to access memory, its t̃lat

can be approximated to the time t̃villas. t̃villas is the amount of time that is spent
by the super-node, apart from the nodes that are being tested. It thus corresponds
to the time that is spent in all blocks of Figure 4.4, minus the time that is spent in
the nodes that are being tested.

In the tests that were performed, the sample generation rate was varied between
100 Hz and 100 kHz, every sample contained 8 64-bit floating-point numbers, and
for every rate, 250 000 samples were sent. The results of these tests can be seen
in Figure 5.12. Compared to previous graphs, this graph additionally contains an
indication of the missed steps of the signal node for generation rate.

100 2500 5000 10000 25000 50000 100000
sample generation rate [Hz]

0

1

2

3

4

t la
t
[µ

s]

8.03%
3.72% 0.03% 0.08% 0.13% 0.25%

0.49%

8.03% 3.71% 0.03% 0.04% 0.07% 0.14% 0.28%

infiniband (RC) shmem

% of samples missed by signal generator

Figure 5.12: Results the benchmark yields for the shmem and InfiniBand node-type
with 8 64-bit floating-point number per sample. The sample genera-
tion rate was varied between 100 Hz and 100 kHz and for every rate,
250 000 samples were sent.

129

5 Evaluation

Difference in latency The difference between the latencies of these node-types can
be seen as the additional latency that communication over InfiniBand adds. The
time penalty that the implementation of the read- and write-function add can be
approximated to:

tIB
r/w-function ≈ t̃IB

lat − t̃shmem
lat − t̃HCA

lat , (5.13)
with t̃IB

lat the median latency that is measured when transmitting data between two
InfiniBand VILLASnode nodes, t̃shmem

lat the median latency of communication be-
tween two shmem nodes, and t̃HCA

lat the latency that was seen for inline communica-
tion in section 5.1.

With t̃IB
lat ≈ 2 µs, t̃shmem

lat ≈ 0.3 µs, and t̃HCA
lat ≈ 0.8 µs this number adds up to

approximately 0.9 µs. Since, as could be seen in subsection 5.1.2, up to 0.3 µs latency
was added when the send rate decreased, the values for the highest frequency from
Figure 5.12 were used. In that way, the added time should should mainly be caused
by the implementations from subsection 4.2.3 and subsection 4.2.4.

Missed steps The graph shows that, in most cases, the signal node only missed
slightly more steps when testing the InfiniBand node, than when testing the shmem
node. This indicates that the InfiniBand node-type did not give much back pressure
and that its write-function returned fast enough and did therefore not influence
the signal generation at these rates. Since median latencies around 2500 ns were
achieved, transmission rates up to

1
2500 ns ≈ 400 kHz (5.14)

should be possible. This number is probably more pessimistic than the reality since
it does not take into account that the latency is not entirely caused by the sending
node.

The same similarities could be seen for other sample sizes and sample generation
rates. Appendix F.6 shows the results the benchmark yielded when the sample
generation rate and the message size were varied for the shmem node-type. Re-
garding missed steps, this graph shows similarities to Figure 5.11 in this chapter
and Figure F.5 and Figure F.6 in appendix F.5. Since the common denominator
of these tests is the file node-type, these results again indicate that the component
that caused the most complications in the VILLASnode node-type benchmark’s da-
tapath was the file node-type.

Thus, since the file node-type is currently the bottleneck in the benchmark from
section 4.3, this node-type should be optimized in order to bring down the number
of steps the benchmark misses.

Decline in latency Analogous to previous observations, the median latency of the
InfiniBand node-type increased for lower frequencies. Remarkable, however, is that
the median latency of the shmem node-type also increased—although only slightly—
for lower frequencies. Even though this decline is not unambiguously visible in
Figure 5.12, it is more evident in Figure F.7 in appendix F.

130

5.3 VILLASnode node-type benchmark

In a previous subsection the suspicion was raised that techniques such as ASPM
caused this effect. But, since the same effect also occurred with node-types that
are independent from the PCI-e bus, the cause of this problem cannot solely lie
within I/O optimization techniques. Hence, the (scheduler of the) OS is probably
also partially responsible for the increasing latency at lower rates.

5.3.3 Comparison to other node-types
The objective of the present work that was raised in subsection 1.1.3 was to imple-
ment hard real-time communication between different host systems that run VIL-
LASnode. It showed that none of the server-server node-types that were available
at the time of writing the present work were able to realize this (Table 1.1).

This subsection examines whether the addition of the InfiniBand node-type to the
pool of available VILLASnode node-types has an added value. It does so by compar-
ing the results of two commonly used node-types for server-server communication—
zeromq and nanomsg—with the InfiniBand node-type and the shmem node-type.

In the tests that were performed, the sample size was fixed to 8 values. The rate
was varied between 100 Hz and 100 kHz and every test was conducted until 250 000
messages were transmitted.

Loopback and physical link First, the tests were performed in loopback mode, in
which the source and target node of the zeromq and nanomsg node-type were both
bound to 127.0.0.1. However, to make a fair comparison to the InfiniBand node-
type tests, which were performed on an actual physical link, these tests had to be
performed on a physical link as well.

To exclude that using different hardware with inferior or superior specifications
would skew the results, the back-to-back connected InfiniBand HCAs were also
used to perform the tests with the Ethernet based node-types. This was done
using the Internet Protocol over InfiniBand (IPoIB) driver (subsection 2.3.3), which
enables processes to send data over the InfiniBand network using the TCP/IP stack
(Figure 2.20).

In order to compel processes to actually use the physical link although both net-
work devices were part of the same system, the Linux network namespace was used.
With namespaces,6 it is possible to wrap system resources in an abstraction, so that
they are only visible to processes in that namespace. In case of the network name-
space, processes in such a namespace make use of a copy of the network stack. It
can be seen as a separate subsystem, with its own routes, firewall rules, and net-
work device(s). The network namespace was managed with ip-netns.7

Results Figure 5.13 shows the results of these runs. For rates below 25 kHz, the
latencies of the loopback tests were almost identical to the latencies of the tests on

6http://man7.org/linux/man-pages/man7/namespaces.7.html
7http://man7.org/linux/man-pages/man8/ip-netns.8.html

131

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html

5 Evaluation

the physical link. Above 25 kHz the latencies of the latter start to increase. Although
especially the zeromq node showed a humongous latency increase, the performance
of both node-types started to become unsuited for real-time simulations.

The percentage of missed steps for 100 Hz and 2500 Hz was exactly the same for
the nanomsg and zeromq node-type as for the InfiniBand and shmem node-type.
This again indicates that this effect was caused by the TSC. It is, however, unlikely
that the relatively high median latencies around these rates were caused by the TSC.
After all, in all previously presented tests in which the TSC was used for these rates,
such a large difference was not seen.

Although a considerable number of samples were never transmitted, especially for
high rates, no samples were dropped after the first sequence number appeared in
the out file. The percentages of missed steps of the nanomsg and zeromq node-type
are displayed in appendix F.7.

100 2500 5000 10000 25000 50000 100000
sample generation rate [Hz]

102

103

t la
t
[µ

s]

nanomsg

nanomsg (lo)

zeromq

zeromq (lo)

Figure 5.13: Results the benchmark yielded for the zeromq and nanomsg node-types.
Both node-types were once tested in loopback mode and once over an
actual physical link. Every sample contained 8 64-bit floating-point
numbers and the sample generation rate was varied between 100 Hz
and 100 kHz. For every rate, 250 000 samples were sent.

Figure 5.14 compares the results of the nanomsg and zeromq node-type on the
physical link with the results of the InfiniBand and shmem node-type. It is apparent
from this graph that the InfiniBand node-type had a latency that was one order of
magnitude smaller than the soft real-time node-types. Furthermore, the variability
of the latency of the samples that were sent over InfiniBand was lower than the
variability of the latency of the same samples over Ethernet. Finally, both the
nanomsg and zeromq node unmistakably started to show performance losses when
exceeding a sample generation rate of 25 kHz.

132

5.3 VILLASnode node-type benchmark

100 2500 5000 10000 25000 50000 100000
sample generation rate [Hz]

100

101

102

103

t la
t
[µ

s]

infiniband

nanomsg

shmem

zeromq

Figure 5.14: Results the benchmark yielded for the server-server node-types zeromq,
nanomsg, and InfiniBand and for the internal node-type shmem. Ev-
ery sample contained 8 64-bit floating-point numbers and the sample
generation rate was varied between 100 Hz and 100 kHz. For every rate,
250 000 samples were sent.

133

6 Conclusion
The present work shows that the InfiniBand Architecture (IBA) enables the trans-
mission of small messages at high rates with sub-microsecond latencies. Together
with the presented performance optimizations, the IBA is eminently suitable as
communication technology for applications with hard real-time requirements.

With only a few adaptions to the existing node-type interface and the buffer man-
agement of VILLASnode, it was possible to create an InfiniBand node-type that
makes full use of the IBA’s zero-copy capabilities and can initiate data transfers
without needing system calls. The adaptions that have been made were necessary
because complications, which were non-existent with prior node-types, emerged.
Eventually, since the InfiniBand Architecture is rooted in the Virtual Interface Ar-
chitecture (VIA), these alterations facilitate VILLASnode with an interface that
is—with minimal adaptions—compatible to other VIAs as well.

In the custom benchmark that was used, the InfiniBand node-type showed me-
dian latency between approximately 1.7 µs (for high rates and small message sizes)
and 4.9 µs (for low rates and large message sizes). Compared to the shmem node-
type, which can be seen as zero-latency reference, these median latencies were only
roughly 1.5–2.5 µs higher. This is an excellent achievement since the latter solely
allows communication between nodes on the same host system. The former, on the
other hand, also allows communication between nodes on different host systems.
For comparison: prior node-types that allow communication between different host
systems and rely on Ethernet as communication technique, showed median latencies
which were one order of magnitude larger than the median latencies the InfiniBand
node-type showed. Furthermore, with the new node-type, much higher transmission
rates could be achieved and the latency’s predictability substantially improved.

It can thus be concluded that the InfiniBand node-type is a valuable extension
to the pool of existing VILLASnode node-types. Although the node-type is not
suitable for inter-laboratory communication, it enables hard real-time scalability of
simulation power within laboratories.

135

7 Future Work

7.1 Real-time optimizations
In his master’s thesis [Vog16], Vogel wrote that “careful optimizations and tuning
[of the Linux OS] are indispensable. The most important change is a PREEMPT_RT-
patched kernel.”

Real-time Linux was first presented by Barabanov and Yodaiken [BY96], and the
PREEMPT_RT patch is currently maintained by Ingo Molnar and Thomas Gleixner.
Its main purpose is not to increase the throughput of a Linux system or to decrease
its latency, but rather to make it more predictable. It does so by:

• making parts of the kernel, which were originally not preemptible, preemptible;

• adding priority inheritance to the kernel;

• running interrupts as threads;

• replacing timers, which leads to high-resolution, user-space-accessible timers.
The internals of the RT patch are described by Rostedt and Hart [RH07] and can
also be found on the Real-Time Linux Wiki.1

The Mellanox modified OFEDTM stack that was used together with the Mellanox’
HCAs (Table 5.1) did not support PREEMPT_RT-patched Linux kernels. Therefore,
none of the benchmarks that were evaluated in chapter 5 could be run on a real-
time operating system. Consequently, the predictability of the benchmark was not
always ideal. Examples are:

• Figure 5.7: max tlat = 17.4 µs and 0.0125 % of tlat > 10 µs with a median
latency of only 786 ns;

• Figure F.4d: max tlat = 262.0 µs and 0.02 % of tlat > 50 µs with a median
latency of only 2.1 µs.

Although there is a chance that the median latencies will become a little higher with
a PREEMPT_RT-patched kernel, these (sometimes excessive) latency spikes should
diminish and the variability should decrease. Furthermore, the increasing latencies
for lower transmission rates should diminish with an RT-patched kernel.

It would certainly be interesting for future research to examine the behavior of
InfiniBand hardware in real-time optimized operating systems. Although InfiniBand
is already an attractive communication solution for for real-time applications, this
could make it even more attractive.

1https://rt.wiki.kernel.org

137

https://rt.wiki.kernel.org

7 Future Work

7.2 Optimization & profiling
Benchmark optimizations During the coarse of the present work, it turned out
that the bottleneck of the benchmark from Figure 4.4 is the file node-type. Although
several optimizations, e.g., suppressing as much system calls as possible, were applied
to this node-type, it remained the bottleneck for high frequencies.

Reducing the effect the file node-type has on the benchmark would yield less
distorted, more realistic indications of the latencies that can be achieved. More
important, however, is that this would facilitate a method to examine the limitations
of low-latency node-types such as InfiniBand and shmem.

Furthermore, it would be beneficial to evaluate whether the TSC can be optimized
in a way that it works with low rates as well.

InfiniBand node-type optimizations Currently, the read- and write-function of
the InfiniBand node-type add a latency penalty of roughly 0.9 µs to the transmission
latency of a message. Since this is the lion’s share of the total latency, it would be
interesting to analyze how many time is spent in the several functions and what the
hot spots are. Profiling tools like gprof [L+83] can be used for this kind of analysis.

Moreover, all settings were optimized for maximum rates. However, the optimal
settings for lower rates probably differ from the optimal settings for high rates.

7.3 RDMA over Converged Ethernet support
In their publication [MR12], MacArthur and Russel observed that RoCE, which al-
lows RDMA over conventional Ethernet networks, was just slightly outperformed by
InfiniBand for small messages. Although RoCE’s performance would be marginally
worse than InfiniBand’s and although it does not have as much support for QoS as
InfiniBand, it would be a great addition to VILLASnode for cases in which existing
infrastructure must be used.

With the alterations that have been made to VILLASnode in order to support
InfiniBand, support for RoCE would not require too many changes to the existing
source code.

138

Appendices

139

A OpenFabrics Verbs
Experimental functions are not included in this appendix. Furthermore, the RDMA
verbs API is omitted because it is not used in the present work. A comprehensive
documentation on all verbs can be found in the RDMA Aware Networks Program-
ming User Manual [15].

A.1 IB verbs API
This section presents the default InfiniBand verbs API.

Table A.1: IB verbs

void ibv_ack_async_event(struct ibv_async_event *event)

Acknowledges events from ibv_get_async_event(). Events must be acknowledged before
associated objects can be destroyed. This is done in order to avoid races.

void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents)

Acknowledges events from ibv_get_cq_event(). Events must be acknowledged before associated
objects can be destroyed. This is done in order to avoid races. Calling this function is relatively
expensive and it is possible to ackknowledge multiple events in one call.

struct ibv_pd * ibv_alloc_pd(struct ibv_context *context)

Allocates a Protection Domain (PD) for the given context.

int ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid)

Attaches a UD QP to a multicast group with a given GID and LID.

int ibv_close_device(struct ibv_context *context)

Closes the context that was opened by ibv_open_device().

int ibv_close_xrc_domain(struct ibv_xrc_domain *d)

Closes an eXtended Reliable Connection (XRC) domain. This will only succeed if no more QP or
SRQ is associated with the XRC.

141

A OpenFabrics Verbs

struct ibv_ah *ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr)

Creates an Address Handle (AH) out of AH attributes. These can be manually created or acquired
via rdma_get_cm_event().

struct ibv_ah * ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc,
struct ibv_grh *grh, uint8_t port_num)

Combines ibv_init_ah_from_wc() and ibv_create_ah().

struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context)

Creates a new, unbound Completion Channel (CC).

struct ibv_cq * ibv_create_cq(struct ibv_context *context, int cqe, void
*cq_context, struct ibv_comp_channel *channel, int comp_vector)

Creates a Completion Queue (CQ). The variable cq_context is user defined and is returned as
parameter in ibv_get_cq_event() if a Completion Channel (CC) is used.

struct ibv_qp * ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr
*qp_init_attr)

Creates a Queue Pair (QP) in the reset state. All desired initial attributes must be placed in
*qp_init_attr.

struct ibv_srq * ibv_create_srq(struct ibv_pd *pd, struct ibv_srq_init_attr
*srq_init_attr)

Creates a Shared Receive Queue (SRQ). All desired initial attributes must be placed in
*srq_init_attr. An SRQ serves as RQ for several QPs and must be passed to ibv_create_qp()
with *qp_init_attr. It is used in order to save resources.

int ibv_create_xrc_rcv_qp(struct ibv_qp_init_attr *init_attr, uint32_t
*xrc_rcv_qpn)

Creates an eXtended Reliable Connection (XRC) Queue Pair (QP).

struct ibv_srq * ibv_create_xrc_srq(struct ibv_pd *pd, struct ibv_xrc_domain
*xrc_domain, struct ibv_cq *xrc_cq, struct ibv_srq_init_attr *srq_init_attr)

Creates an eXtended Reliable Connection (XRC) Shared Receive Queue (SRQ).

int ibv_dealloc_pd(struct ibv_pd *pd)

Deallocates a Protection Domain (PD). Fails if objects are still associated with the given PD.

int ibv_dereg_mr(struct ibv_mr *mr)

Destroys a Memory Region (MR). This will only succeed if no more MWs are associated to the MR.

142

A.1 IB verbs API

int ibv_destroy_ah(struct ibv_ah *ah)

Destroys an Address Handle (AH).

int ibv_destroy_comp_channel(struct ibv_comp_channel *channel)

Destroys an Completion Channel (CC). This will only succeed if no more CQ is associated with
the CC.

int ibv_destroy_cq(struct ibv_cq *cq)

Destroys an Completion Queue (CQ). This will only succeed if no more QP is associated with the
CQ.

int ibv_destroy_qp(struct ibv_qp *qp)

Destroys a Queue Pair (QP).

int ibv_destroy_srq(struct ibv_srq *srq)

Destroys a Shared Receive Queue (SRQ). This will only succeed if no more QP is associated with
this Shared Receive Queue (SRQ).

int ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid)

Detaches a UD QP from the multicast group with a given GID and LID.

const char * ibv_event_type_str(enum ibv_event_type event_type)

Translates an enumeration that is included in an event returned by ibv_get_async_event() into
a string.

int ibv_fork_init(void)

Initializes the data structure to handle fork() safely.

void ibv_free_device_list(struct ibv_device **list)

Frees the list that was previously returned by ibv_get_device_list().

int ibv_get_async_event(struct ibv_context *context, struct ibv_async_event
*event)

Retrieves asynchronous events from the devices. This function is a blocking function.

int ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void
**cq_context)

Retrieves notifications from a Completion Channel (CC) that is bound to one or more CQs. This
function is a blocking function.

143

A OpenFabrics Verbs

uint64_t ibv_get_device_guid(struct ibv_device *device)

Returns the 64-bit GUID of a device returned by ibv_get_device_list().

struct ibv_device ** ibv_get_device_list(int *num_devices)

Returns a list, including name and other properties, of devices in the system that support the IB
verbs.

const char * ibv_get_device_name(struct ibv_device *device)

Returns a pointer to the name of a device returned by ibv_get_device_list().

int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num, struct
ibv_wc *wc, struct ibv_grh *grh, struct ibv_ah_attr *ah_attr)

Initializes an Address Handle (AH) in *ah_attr, based on a CQE of a received message.

int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, enum
ibv_qp_attr_mask attr_mask)

Modifies the attributes and the state of a Queue Pair (QP). Attribute changes and transitions are
subject to strict rules that can be found in [15] and [07].

int ibv_modify_srq (struct ibv_srq *srq, struct ibv_srq_attr *srq_attr, int
srq_attr_mask)

Modifies the attributes which are specified in the bitmask srq_attr_mask with the values in
*srq_attr.

int ibv_modify_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32_t xrc_qp_num,
struct ibv_qp_attr *attr, int attr_mask)

Modifies the attributes which are specified in the bitmask attr_mask with the values in *attr.
The QP is then transitioned through reset → init → started.

const char * ibv_node_type_str (enum ibv_node_type node_type)

Returns the type of the device: HCA, switch, router, RDMA enabled NIC, or unknown.

struct ibv_context * ibv_open_device(struct ibv_device *device)

Opens a device returned by ibv_get_device_list() and returns a context that can be used with
all verbs that directly modify the device.

struct ibv_xrc_domain * ibv_open_xrc_domain(struct ibv_context *context, int fd,
int oflag)

Opens and eXtended Reliable Connection (XRC) domain for the device.

144

A.1 IB verbs API

int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc)

Retrieves Completion Queue Entries (CQEs) from the Completion Queue (CQ).

const char * ibv_port_state_str (enum ibv_port_state port_state)

Returns a string that describes the enumeration port_state.

int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr
**bad_wr)

Submits a linked list of Work Requests (WRs) to the Receive Queue (RQ). Processing will stop on
the first error and the erroneous WR will be returned via **bad_wr. At least one WR must be
placed in the RQ to transition to the state ready to receive.

int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr, struct ibv_send_wr
**bad_wr)

Submits a linked list of Work Requests (WRs) to the Send Queue (SQ). All communication is
initialized through this function. Processing will stop on the first error and the erroneous WR will
be returned via **bad_wr.

int ibv_post_srq_recv(struct ibv_srq *srq, struct ibv_recv_wr *recv_wr, struct
ibv_recv_wr **bad_recv_wr)

Submits a linked list of Work Requests (WRs) to a given Shared Receive Queue (SRQ). This
function is similar to ibv_post_recv().

int ibv_query_device(struct ibv_context *context, struct ibv_device_attr
*device_attr)

Retrieves an extensive list of attributes of a device, e.g., maximum MR size, maximum number of
QPs, maximum number of CQs, vendor ID, node and system image GUID, and hardware version.

int ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union
ibv_gid *gid)

Retrieves an entry from the port’s GID table.

int ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index,
uint16_t *pkey)

Retrieves an entry from the port’s partition key table.

int ibv_query_port(struct ibv_context *context, uint8_t port_num, struct
ibv_port_attr *port_attr)

Retrieves and extensive list of attributes of a port, e.g., maximum MTU and message size.

int ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, enum
ibv_qp_attr_mask attr_mask, struct ibv_qp_init_attr *init_attr)

Retrieves the attributes which are specified in the bitmask attr_mask from the Queue Pair (QP).

145

A OpenFabrics Verbs

int ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr)

Similar to ibv_query_qp(), but for a Shared Receive Queue (SRQ).

int ibv_query_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32_t xrc_qp_num,
struct ibv_qp_attr *attr, int attr_mask, struct ibv_qp_init_attr *init_attr)

Similar to ibv_query_qp(), but for an eXtended Reliable Connection (XRC).

struct ibv_mr * ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, enum
ibv_access_flags access)

Registers a Memory Region (MR) associated with a PD. The returned struct ibv_mr contains the
local and remote key.

int ibv_reg_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32_t xrc_qp_num)

Registers a user process with the defined eXtended Reliable Connection (XRC) receive Queue Pair
(QP).

int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only)

Informs the Completion Queue (CQ) about the fact that it must send completion events to a
Completion Channel (CC). This works only for Completion Queue Entries (CQEs) that were not
yet present in the CQ when this function was called.

int ibv_resize_cq(struct ibv_cq *cq, int cqe)

Resizes the Completion Queue (CQ). The new size must be bigger than the number of CQEs
present in the CQ.

int ibv_unreg_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32_t xrc_qp_num)

Unregisters a user process from the defined eXtended Reliable Connection (XRC) receive Queue
Pair (QP).

146

A.2 RDMA CM API

A.2 RDMA CM API
This section presents the RDMA communication manager API, as presented in
subsection 2.3.3.

Table A.2: RDMA CM verbs

int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)

Accepts a connection request or datagram service lookup. This function is called on the passive,
listening side.

int rdma_ack_cm_event(struct rdma_cm_event *event)

Acknowledges events from ibv_get_cm_event(). Events must be acknowledged before associated
objects can be destroyed. This is done in order to avoid races.

int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)

Binds the communication identifier to a local RDMA device that is associated with the source IP
address.

int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)

Initiates a connection request. When relying on a connected service type, this requests a connection
to a remote location. In case of an unconnected service type, this requests all information from the
remote QP to send datagrams. Before calling rdma_connect(), rdma_resolve_route() must have
been called.

int rdma_create_ep(struct rdma_cm_id **id, struct rdma_addrinfo *res, struct
ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr)

Creates a communication endpoint. If *qp_init_attr is provided, a QP to track communication
information will be created. If no PD is defined, it will be associated with the default PD. Fur-
thermore, it creates an communication identifier that operates synchronously. To let it operate
asynchronously, it must be bound to a Completion Channel (CC) using rdma_migrate_id().

struct rdma_event_channel * rdma_create_event_channel(void)

Creates a new, unbound communication event channel.

int rdma_create_id(struct rdma_event_channel *channel, struct rdma_cm_id **id,
void *context, enum rdma_port_space ps)

Creates an RDMA CM communication identifier. Although similar to sockets, the rdma_cm_id
must be bound to a device before communication can occur.

int rdma_create_qp(struct rdma_cm_id *id, struct ibv_pd *pd, struct
ibv_qp_init_attr *qp_init_attr)

Creates a Queue Pair (QP) that is associated to an communication identifier. The QP’s state
transitions are managed by the identifier.

147

A OpenFabrics Verbs

int rdma_destroy_ep(struct rdma_cm_id *id)

Destroys the communication endpoint and all associated resources.

void rdma_destroy_event_channel(struct rdma_event channel *channel)

Destroys a communication event channel. Prior to destroying the channel, all associated communi-
cation identifiers must have been destroyed and all events must have been acknowledged.

int rdma_destroy_id(struct rdma_cm_id *id)

Destroys an RDMA CM communication identifier. Prior to destroying the identifier, all associated
QPs must have been destroyed and all events must have been acknowledged.

void rdma_destroy_qp(struct rdma_cm_id *id)

Destroys a Queue Pair (QP) associated with the communication identifier.

int rdma_disconnect(struct rdma_cm_id *id)

Disconnects any QP and transitions them tot the error state.

char * rdma_event_str(enum rdma_cm_event_type event)

Translates an enumeration that is included in an event returned by ibv_get_cm_event() into a
string.

void rdma_free_devices(struct ibv_context **list)

Destroys the array that was retrieved by rdma_get_devices().

void rdma_freeaddrinfo(struct rdma_addrinfo *res)

Frees the address that was retrieved with rdma_getaddrinfo(). This function is very similar to
freeaddrinfo() [Ker10].

int rdma_get_cm_event(struct rdma_event_channel *channel, struct rdma_cm_event
**event)

Retrieves asynchronous events from the communication event channel. This function is a blocking
function.

struct ibv_context ** rdma_get_devices(int *num_devices)

Retrieves an array of available RDMA devices in the system.

uint16_t rdma_get_dst_port(struct rdma_cm_id *id)

Returns the port number of a communication identifier’s peer endpoint. If the identifier is
unconnected, the function shall return ‘0’.

148

A.2 RDMA CM API

struct sockaddr * rdma_get_local_addr(struct rdma_cm_id *id)

Retrieves the local sockaddr address of a communication identifier.

struct sockaddr * rdma_get_peer_addr(struct rdma_cm_id *id)

Retrieves the remote sockaddr address of a communication identifier. If the identifier is uncon-
nected, the function shall fill the complete sockaddr C structure with zeros.

int rdma_get_request(struct rdma_cm_id *listen, struct rdma_cm_id **id)

Retrieves the next pending connection request event from a synchronously operating communication
identifier. If the function returns successfully, it will create a new communication identifier that
represents the connection.

uint16_t rdma_get_src_port(struct rdma_cm_id *id)

Returns the local port number of a communication identifier.

int rdma_getaddrinfo(char *node, char *service, struct rdma_addrinfo *hints,
struct rdma_addrinfo **res)

Resolves the destination node and service address and returns all information to communicate with
a remote node in **res. This function is very similar to getaddrinfo() [Ker10].

int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, void
*context)

Joins a multicast group and attaches a Queue Pair (QP) that is associated to the communication
identifier.

int rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)

Leaves a multicast group and detaches a Queue Pair (QP) that is associated to the communication
identifier.

int rdma_listen(struct rdma_cm_id *id, int backlog)

Sets the communication identifier to listening mode for incoming connection requests. Prior to
calling this function, the device must have been bound to a local device with rdma_bind_addr().

int rdma_migrate_id(struct rdma_cm_id *id, struct rdma_event_channel *channel)

Migrates a communication identifier and all its pending events to a new communication event
channel.

int rdma_notify(struct rdma_cm_id *id, enum ibv_event_type event)

Notifies the communication identifier about events that have occured on a QP that is associated to
it. Usually, this is not necessary. However, it can be necessary if the QP was created out of band
and the communication identifier does not know its status yet.

149

A OpenFabrics Verbs

int rdma_reject(struct rdma_cm_id *id, const void *private_data, uint8_t
private_data_len)

Rejects a connection request or datagram service lookup. This function is called on the passive,
listening side.

int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct
sockaddr *dst_addr, int timeout_ms)

Resolves a destination IP address to a valid RDMA address. If, additionally, a source IP address
is provided, the RDMA CM communication identifier will be bound to that device. The latter is
only necessary if rdma_bind_addr() has not been called yet.

int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms)

Resolves the route to a given destination address. Prior to calling this function,
rdma_resolve_addr() must have been called on a destination address.

int rdma_set_option(struct rdma_cm_id *id, int level, int optname, void *optval,
size_t optlen)

Sets options for a communication identifier. The options can be found in the rdma_cma.h header
file.1

1https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/rdma_cma.h

150

https://github.com/linux-rdma/rdma-core/blob/master/librdmacm/rdma_cma.h

B Tuned daemon profile
This appendix shows the latency-performance tuned profile that was used during
the benchmarks that were run on the HCAs and VILLASnode.

1 [main]
2 summary = Optimize for deterministic performance at the cost of
3 increased power consumption
4
5 [cpu]
6 force_latency =1
7 governor = performance
8 energy_perf_bias = performance
9 min_perf_pct =100

10
11 [sysctl]
12 kernel . sched_min_granularity_ns =10000000
13 vm. dirty_ratio =10
14 vm. dirty_background_ratio =3
15 vm. swappiness =10
16 kernel . sched_migration_cost_ns =5000000

Listing B.1: The tuned default profile latency-performance. Comments are omitted
for the sake of brevity.

151

C VILLASnode node-type interface

Table C.1: Function pointers from the node_type C structure (Listing D.3), which
are used to register node-type functions with the super-node.

int (*check)(struct node *n);

This function is executed once for every instance of a node-type and shall check if all previously
parsed settings are valid.

int (*destroy)(struct node *n);

This function is the counterpart of int (*start)(struct super_node *sn); and can be used as
global de-initialization of certain node-type.

int (*fd)(struct node *n);

This function must return a file descriptor, which enables the node to send notifications to the
super-node. This is necessary when the super-node multiplexes incoming data from several nodes,
and only wants to call a node’s read-function when data is actually available.

int (*parse)(struct node *n, json_t *cfg);

The number of instances to be created of a certain node-type and their settings are specified in
a JSON file and decoded using the Jansson C library.1 This function is executed once for every
instance of a node-type and shall interpret all settings which are passed to the instance via the
parameter json_t *cfg.

char * (*print)(struct node *n);

When invoked, this function shall return a string with a textual representation of this instance of
the node-type.

1http://www.digip.org/jansson

153

http://www.digip.org/jansson

C VILLASnode node-type interface

int (*read)(struct node *n, struct sample *smps[], unsigned cnt, unsigned
*release);

This function forms—together with the write-function—the core of every node-type instance. By
calling this function, the super-node passes an empty structure which can hold cnt samples. The
node-type instance than fills *smps[] with 0 < ret < cnt values, where ret is also the value that
is returned by the function.
Every sample contains a reference counter which is incremented before the sample is passed to
a node. Usually, after the read (or write) function returns, these samples are released for re-use
by decrementing the reference counter. There are certain situations in which it is undesirable
to release the samples after read (or write) is called. The *release value lets the node define
how many samples from *smps[] may be released on return. *release is initialized to cnt; this
indicates the default case in which all samples are released after the struct returns.
An example of this situation for the InfiniBand node can be found in subsection 4.2.3.

int (*reverse)(struct node *n);

This function may be called by the super-node between the parse- and the start-node-function. It
will interchange the source and target address information and can be used to initialize a source
and destination node-type instance with the same configuration file. This function is mainly used
for debugging environments.

int (*start)(struct node *n);

This function is executed once for every instance of a node-type and is used to initialize resources
which are unique for every node.

int (*start)(struct super_node *sn);

This function is executed once when at least one instance of a certain node-type is present in the
super-node. It can be used as global initialization to create shared resources for a certain node-type.

int (*stop)(struct node *n);

This function is the counterpart of int (*start)(struct node *n); and shall be used to stop
operation of the node-type instance.

int (*stop)();

This function shall free the memory of an instance of a node-type.

int (*write)(struct node *n, struct sample *smps[], unsigned cnt, unsigned
*release);

The parameters of this function are similar to those of the read-function. The super-node
provides cnt samples, which it wants the node to send to its target. The return value of this
function indicates the number of samples which were successfully sent. By changing *release,
the node-type instance can define that only the first *release elements from *smps[] should be
released for re-use on return of the function.
An example of this situation for the InfiniBand node can be found in subsection 4.2.4.

154

D VILLASnode structs
This appendix presents a few structures which help to understand the VILLASnode
architecture from chapter 3. A full overview of all header files can be found on the
VILLASnode Git repository.1

D.1 struct sample

1 struct sample {
2 uint64_t sequence ;
3 int length ;
4 int capacity ;
5 int flags;
6
7 struct list * signals ;
8
9 atomic_int refcnt ;

10 ptrdiff_t pool_off ;
11
12 struct {
13 struct timespec origin ;
14 struct timespec received ;
15 } ts;
16
17 union signal_data data [];
18 };

Listing D.1: The C structure of a VILLASnode sample.

1https://git.rwth-aachen.de/acs/public/villas/VILLASnode

155

https://git.rwth-aachen.de/acs/public/villas/VILLASnode

D VILLASnode structs

D.2 struct node

1 struct node_direction {
2 int enabled ;
3 int builtin ;
4 int vectorize ;
5
6 struct list hooks;
7
8 json_t *cfg;
9 };

10
11 struct node
12 {
13 char *name;
14 char *_name ;
15 char * _name_long ;
16
17 int affinity ;
18
19 uint64_t sequence ;
20
21 struct stats * stats ;
22
23 struct node_direction in , out;
24
25 struct list signals ;
26
27 enum state state ;
28
29 struct node_type *_vt;
30 void *_vd;
31
32 json_t *cfg;
33 };

Listing D.2: The C structure of a VILLASnode node.

156

D.3 struct node_type

D.3 struct node_type

1 struct node_type {
2 int vectorize ;
3 int flags ;
4
5 enum state state ;
6
7 struct list instance ;
8
9 size_t size;

10 size_t pool_size ;
11
12 struct {
13 // Global , per node -type
14 int (* start)(struct super_node *sn);
15 int (* stop)();
16 } type;
17
18 // Function pointers
19 void * (* create)();
20 int (* init)();
21 int (* destroy)(struct node *n);
22 int (* parse)(struct node *n, json_t *cfg);
23 int (* check)(struct node *n);
24 char * (* print)(struct node *n);
25 int (* start)(struct node *n);
26 int (* stop)(struct node *n);
27
28 int (* read)(struct node *n, struct sample *smps [],
29 unsigned cnt , unsigned * release);
30
31 int (* write)(struct node *n, struct sample *smps [],
32 unsigned cnt , unsigned * release);
33
34 int (* reverse)(struct node *n);
35
36 int (* fd)(struct node *n);
37
38 // Memory Type
39 struct memory_type * (* memory_type)(struct node *n,
40 struct memory_type * parent);
41 };

Listing D.3: The C structure of a VILLASnode node-type.

157

E InfiniBand node configuration

1 source_node = {
2 type = " infiniband ",
3 rdma_transport_mode = "${ IB_MODE }",
4
5 in = {
6 address = "10.0.0.2:1337" ,
7
8 max_wrs = 4,
9 cq_size = 4,

10 buffer_subtraction = 2
11 },
12 out = {
13 address = "10.0.0.1:1337" ,
14 resolution_timeout = 1000 ,
15 send_inline = true ,
16 max_inline_data = 128,
17 use_fallback = true ,
18
19 max_wrs = 4096 ,
20 cq_size = 4096 ,
21 periodic_signaling = 2048
22 }
23 },
24
25 target_node = {
26 type = " infiniband ",
27 rdma_transport_mode = "${ IB_MODE }",
28
29 in = {
30 address = "10.0.0.1:1337" ,
31
32 max_wrs = 512,
33 cq_size = 512,
34 buffer_subtraction = 64,
35
36 signals = {
37 count = ${ NUM_VALUE },
38 type = "float"
39 }
40 }
41 }

Listing E.1: The configuration that was used to examine the InfiniBand node-type
with the benchmark from Figure 4.4. The bash variables were replaced
by a script that controlled the benchmark.

159

F Results benchmarks

F.1 Influence of CQEs on latency of RDMA write

Table F.1: The benchmark’s settings which were used to analyze the influence of
Completion Queue Entry (CQE) creation on latency for RDMA write
operations.

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p
m

es
sa

ge
siz

e

Figure F.1 UC busy busy 3 7 rdma 8000 20 0 ns tsubm 32 B
Figure F.1 UC busy busy 3 3 rdma 8000 20 0 ns tsubm 32 B

0
200

0
300

0
400

0
500

0
600

0
700

0
800

0
900

0
100

00841
956

latencies [ns]

100

101

102

103

104

105

fr
eq

ue
nc

y

trecv tuns.subm >10000ns: 0.0025% (max: 12490.0 ns)
trecv tsig.subm >10000ns: 0.0015% (max: 10265.0 ns)

trecv tuns.subm trecv tsig.subm

Figure F.1: Results of the one-way benchmark with the settings from Table F.1.
These were used to analyze the difference in latency between messages
that did and did not cause a Completion Queue Entry (CQE). The
RDMA write operation mode was used in this test.

161

F Results benchmarks

F.2 Influence of constant burst size on latency

Table F.2: The benchmark’s settings which were used to analyze whether the steep
slope between 128 B and 256 B in Figure 5.8 was caused by the non-
constant burst sizes, with j ∈ [0, 7].

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p

m
es

sa
ge

siz
e

Figure F.2a N— RC busy busy 3 7 send 2730 10 0 ns tsubm 8 · 2j B
Figure F.2a H— RC busy busy 3 7 rdma 2730 10 0 ns tsubm 8 · 2j B
Figure F.2b N— UC busy busy 3 7 send 2730 10 0 ns tsubm 8 · 2j B
Figure F.2b H— UC busy busy 3 7 rdma 2730 10 0 ns tsubm 8 · 2j B
Figure F.2c N— UD busy busy 3 7 send 2730 10 0 ns tsubm 8 · 2j B

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

0

500

1000

1500

2000

2500

3000

t la
t
[n

s]

(a) RC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(b) UC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(c) UD

send (inline) rdma write (inline)

Figure F.2: Results of the one-way benchmark with the settings from Table F.2.
While a triangle indicates t̃lat for a certain message size, the error bars
indicate the upper and lower 10% of tlat for that message size.

162

F.3 Influence of intermediate pauses on latency

F.3 Influence of intermediate pauses on latency

Table F.3: The benchmark’s settings which were used to analyze whether the in-
creasing latency in Figure 5.8 was caused by congestion control, with
i ∈ [0, 12].

se
rv

ice
ty

pe
po

lli
ng

(se
nd

)
po

lli
ng

(re
cv

)
in

lin
e m

od
e

un
sig

na
led

op
er

at
ion

bu
rst

siz
e

re
pe

tit
ion

s
loo

p
pa

us
es

tim
es

ta
m

p

m
es

sa
ge

siz
e

Figure F.3a N— RC busy busy 7 7 send 8000 5 5500 ns tsubm 8 · 2i B
Figure F.3a H— RC busy busy 7 7 rdma 8000 5 5500 ns tsubm 8 · 2i B
Figure F.3b N— UC busy busy 7 7 send 8000 5 5500 ns tsubm 8 · 2i B
Figure F.3b H— UC busy busy 7 7 rdma 8000 5 5500 ns tsubm 8 · 2i B
Figure F.3c N— UD busy busy 7 7 send 8000 5 5500 ns tsubm 8 · 2i B

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

0

1000

2000

3000

4000

5000

6000

t la
t
[n

s]

(a) RC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(b) UC

8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

message size [B]

(c) UD

send rdma write

Figure F.3: Results of the one-way benchmark with the settings from Table F.3.
While a triangle indicates t̃lat for a certain message size, the error bars
indicate the upper and lower 10% of tlat for that message size.

163

F Results benchmarks

F.4 Comparison of timer functions

(a)

0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
2.3

88

tlat [µs]

100

101

102

103

104

105
fr
eq
ue
nc
y

tlat>50µs: 0.74% (maxtlat: 740.34µs)

missing samples:
 in: 12085 (4.83%)
out: 12085 (4.83%)

samples not transmitted:
total: 0 (0.00%)

while connected: 0 (0.00%)

(b)

0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
2.3

30

tlat [µs]

100

101

102

103

104

105

fr
eq
ue
nc
y

tlat>50µs: 0.01% (maxtlat: 647.98µs)

missing samples:
 in: 3035 (1.21%)
out: 3035 (1.21%)

samples not transmitted:
total: 0 (0.00%)

while connected: 0 (0.00%)

(c)

0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
2.4

25

tlat [µs]

100

101

102

103

104

105

fr
eq
ue
nc
y

tlat>50µs: 0.02% (maxtlat: 265.32µs)

missing samples:
 in: 1692 (0.68%)
out: 1692 (0.68%)

samples not transmitted:
total: 0 (0.00%)

while connected: 0 (0.00%)

(d)

0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
2.0

89

tlat [µs]

100

101

102

103

104

105

fr
eq
ue
nc
y

tlat>50µs: 0.02% (maxtlat: 262.04µs)

missing samples:
 in: 1244 (0.50%)
out: 1244 (0.50%)

samples not transmitted:
total: 0 (0.00%)

while connected: 0 (0.00%)

tlat=trecv tgeneration

Figure F.4: Comprehensive plots of the results from Table 5.12. Subfigure (a) and
(b) show the results in the unoptimized environment with timerfd and
TSC, respectively. Subfigure (c) and (d) show the results for the same
settings, but in the optimized environment.

164

F.5 3D plots InfiniBand nodes (UC & UD)

F.5 3D plots InfiniBand nodes (UC & UD)

rate

100
2500

5000
10000

25000
50000

100000
num

ber
 of

 va
lue

s i
n s

amp
le

1
2

4
8

16
32

64

t la
t
[µ
s]

0

1

2

3

4

5

6

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%
0%

0%
0%

8%
3%

0%
0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0% 0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
22%

8%

3% 0%
0%

0% 12%
55%

2.0

2.5

3.0

3.5

4.0

t la
t
[µ

s]

min tlat: 1.699 µs max tlat: 4.936 µs

% of samples missed by signal generator

Figure F.5: The influence of the message size and generation rate on t̃lat between
two InfiniBand nodes that communicate over an Unreliable Connection
(UC).

rate

100
2500

5000
10000

25000
50000

100000
num

ber
 of

 va
lue

s i
n s

amp
le

1
2

4
8

16
32

64

t la
t
[µ
s]

0

1

2

3

4

5

6

8%
3%

0%
0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0% 0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
22%

8%

3%
0%

0%
0%

10% 55%

2.0

2.5

3.0

3.5

4.0

t la
t
[µ

s]

min tlat: 1.897 µs max tlat: 5.096 µs

% of samples missed by signal generator

Figure F.6: The influence of the message size and generation rate on t̃lat between two
InfiniBand nodes that communicate over Unreliable Datagram (UD).

165

F Results benchmarks

F.6 3D plot shmem node

rate

100
2500

5000
10000

25000
50000

100000
num

ber
 of

 va
lue

s i
n s

amp
le

1
2

4
8

16
32

64

t la
t
[µ
s]

0

1

2

8%
3%

0%
0%

0%
0%

0%

8%
3%

0%
0%

0%
0%

0%

8%
3%

0%
0%

0%
0%

0%

8%

3%
0%

0%
0%

0%
0%

8%

3%
0%

0%

0%

0%
0%

8%

3%
0%

0%

0%
0%

26%

8%

3%
0%

0%

0%
14%

57%

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t la
t
[µ

s]

min tlat: 0.161 µs max tlat: 1.868 µs

% of samples missed by signal generator

Figure F.7: The influence of signal generation rate and the message size on the
median latency between two shmem.

166

F.7 Missed steps nanomsg and zeromq nodes

F.7 Missed steps nanomsg and zeromq nodes

Table F.4: The percentage of missed steps in the in and out files that were generated
by the VILLASnode node-type benchmark for the nanomsg and zeromq
node-type. Although a considerable number of samples never got trans-
mitted, especially for high rates, no samples were dropped after the first
sequence number appeared in the out files.

rate [Hz] file Missed steps [%]
nanomsg nanomsg (lo) zeromq zeromq (lo)

100 in 8.03 8.03 8.03 8.03
out 8.04 8.03 8.04 8.04

2500 in 3.72 3.71 3.72 3.71
out 3.80 3.71 3.78 3.78

5000 in 0.03 0.03 0.03 0.04
out 0.20 0.03 0.15 0.18

10 000 in 0.04 0.05 0.04 0.07
out 0.36 0.05 0.27 0.34

25 000 in 0.08 0.08 0.11 0.11
out 0.90 0.08 0.70 0.76

50 000 in 0.17 0.17 0.24 0.22
out 1.75 0.17 1.42 1.58

100 000 in 0.54 0.99 0.45 0.61
out 3.91 1.00 2.68 3.33

167

List of Figures
1.1 VILLASweb and VILLASnode, the main components of VILLAS-

framework. 10

2.1 The Virtual Interface Architecture (VIA) model. 17
2.2 The Virtual Interface Architecture (VIA) state diagram. 19
2.3 The network stack of the InfiniBand Architecture (IBA). 20
2.4 The segmentation of a message into packets. 21
2.5 The InfiniBand Architecture (IBA) model. 24
2.6 Three Send Queues (SQs) on a sending node communicate with three

Receive Queues (RQs) on a receiving node. Both nodes have both a
send and a receive queue, but the unused queues have been omitted
for the sake of clarity. 25

2.7 The state diagram of a Queue Pair (QP) in the InfiniBand Architec-
ture (IBA). 27

2.8 The state machine for the initialization of a Subnet Manager (SM).
AttributeModifiers from the Management Datagram (MAD) header
(Figure 2.9) are completely written in capital letters. 30

2.9 The composition of a Management Datagram (MAD). The first 24 B
are reserved for the common MAD header. The header is followed by
up to 232 B of MAD class specific data. 32

2.10 The composition of a complete packet in the InfiniBand Architecture
(IBA). 33

2.11 The composition of the Local Routing Header (LRH). 35
2.12 The composition of the Global Routing Header (GRH). 36
2.13 The possible structures of Global Identifiers (GIDs). 36
2.14 Functional principle of the arbiter. 39
2.15 The structure of a Flow Control Packet (FC packet). 40
2.16 Working principle of Link-Level Flow Control (LLFC) in the Infini-

Band Architecture (IBA). 41
2.17 Working principle of the Congestion Control Architecture (CCA).

The Congestion Control Table (CCT), timer (TMR), and threshold
value are initialized by the Congestion Control Manager (CCM). . . . 43

2.18 The relationship between Queue Pairs (QPs), Memory Windows (MWs),
Memory Regions (MRs), and the host’s main memory. 44

2.19 Several Communication Management sequences. All depicted se-
quences take place between an active and a passive IBA host. 48

2.20 A simplified overview of the OFEDTM stack. 50

169

List of Figures

2.21 A comparison between busy polling and polling after an event channel
returns. 55

2.22 An example of an 1-bit character, a 4-bit integer, and a 2-bit short
from Listing 2.5 in memory with a word size of 32 B. 59

2.23 Two non-uniform memory access (NUMA) nodes with HCAs on the
respective PCI-e buses. 61

3.1 The internal VILLASnode architecture [Vog+17]. Depicted is one
VILLASnode instance (super-node) that includes three paths, which
connect five node-type instances (nodes) with each other. 68

3.2 A depiction of the working principle of the read-function in VIL-
LASnode. This function is part of the interface between a super-node
and a node. 72

3.3 A depiction of the working principle of the write-function in VIL-
LASnode. This function is part of the interface between a super-node
and a node. 73

3.4 A depiction of the working principle of the read-function in an Infini-
Band node. The RQ is part of a complete QP, but the SQ is omitted
for the sake of simplicity. 74

3.5 A depiction of the working principle of the write-function in an Infini-
Band node. The SQ is part of a complete QP, but the RQ is omitted
for the sake of simplicity. 76

3.6 The VILLASnode state diagram with the two newly introduced states
pending connect and connected. 79

4.1 The decision graph for the read-function in the InfiniBand node.
Prior to invoking the read-function, *release is always set to cnt
by the super-node. 90

4.2 The decision graph for the write-function in the InfiniBand node.
Prior to invoking the write-function, *release is always set to cnt
by the super-node. 92

4.3 An overview of the VILLASnode InfiniBand node-type and its com-
ponents. 94

4.4 The VILLASnode node-type benchmark is formed by connecting a
signal node, two file nodes, and two instances of the node-type that
shall be tested. 95

5.1 The configuration of the Dell PowerEdge T630 from Table 5.1, which
was used in the present work’s evaluations. NUMA specific data is
acquired with numactl. 104

5.2 Results of the one-way benchmark with the settings from Table 5.2.
These were used to analyze latencies with event based polling. 107

5.3 Results of the one-way benchmark with the settings from Table 5.3.
These were used to analyze latencies with busy polling. 110

170

List of Figures

5.4 Results of the one-way benchmark with the settings from Table 5.4.
These were used to analyze the difference between tlat and tsend

lat 112
5.5 Results of the one-way benchmark with the settings Table 5.5. These

were used to analyze the difference between messages that are sub-
mitted regularly (treg.

subm) and that are submitted inline (tinl.
subm). 114

5.6 Results of the one-way benchmark with the settings from Table 5.6.
These were used to analyze the difference between the RDMA write
with immediate and send with immediate operation. 115

5.7 Results of the one-way benchmark with the settings from Table 5.7
to analyze the difference in latency between messages that did and
did not cause a Completion Queue Entry (CQE). The send operation
mode was used in this test. 116

5.8 Results of the one-way benchmark with the settings from Table 5.8.
These were used to analyze the influence of message size on the la-
tency. While a triangle indicates t̃lat for a certain message size, the
error bars indicate the upper and lower 10 % of tlat for that message
size. 119

5.9 Results the benchmark yields for the InfiniBand node-type with a
fixed message size of 88 B for RC and 128 B for UD. The sample
generation rate was varied between 100 Hz and 100 kHz and for every
rate, 250 000 samples were sent. 126

5.10 Results the benchmark yields for the InfiniBand node-type at a fixed
sample generation rate of 25 kHz and a message size that was varied
between 32 B and 536 B for RC and 74 B and 576 B for UD. For every
message size, 250 000 samples were sent. 127

5.11 The influence of the message size and generation rate on the median
latency between two InfiniBand nodes that communicate over an Re-
liable Connection (RC). 128

5.12 Results the benchmark yields for the shmem and InfiniBand node-
type with 8 64-bit floating-point number per sample. The sample
generation rate was varied between 100 Hz and 100 kHz and for every
rate, 250 000 samples were sent. 129

5.13 Results the benchmark yielded for the zeromq and nanomsg node-
types. Both node-types were once tested in loopback mode and once
over an actual physical link. Every sample contained 8 64-bit floating-
point numbers and the sample generation rate was varied between
100 Hz and 100 kHz. For every rate, 250 000 samples were sent. 132

5.14 Results the benchmark yielded for the server-server node-types ze-
romq, nanomsg, and InfiniBand and for the internal node-type shmem.
Every sample contained 8 64-bit floating-point numbers and the sam-
ple generation rate was varied between 100 Hz and 100 kHz. For every
rate, 250 000 samples were sent. 133

171

List of Figures

F.1 Results of the one-way benchmark with the settings from Table F.1.
These were used to analyze the difference in latency between messages
that did and did not cause a Completion Queue Entry (CQE). The
RDMA write operation mode was used in this test. 161

F.2 Results of the one-way benchmark with the settings from Table F.2.
While a triangle indicates t̃lat for a certain message size, the error
bars indicate the upper and lower 10% of tlat for that message size. . 162

F.3 Results of the one-way benchmark with the settings from Table F.3.
While a triangle indicates t̃lat for a certain message size, the error
bars indicate the upper and lower 10% of tlat for that message size. . 163

F.4 Comprehensive plots of the results from Table 5.12. Subfigure (a) and
(b) show the results in the unoptimized environment with timerfd
and TSC, respectively. Subfigure (c) and (d) show the results for the
same settings, but in the optimized environment. 164

F.5 The influence of the message size and generation rate on t̃lat between
two InfiniBand nodes that communicate over an Unreliable Connec-
tion (UC). 165

F.6 The influence of the message size and generation rate on t̃lat between
two InfiniBand nodes that communicate over Unreliable Datagram
(UD). 165

F.7 The influence of signal generation rate and the message size on the
median latency between two shmem. 166

172

List of Tables
1.1 Interfaces supported by VILLASnode as of June 2018. 9

2.1 InfiniBand Architecture’s service types. 23
2.2 Explanation of abbreviations from Figure 2.10. More details on the

content of the different packets can be found in the IBA specifica-
tion [07]. 33

2.3 Required Communication Management messages, used for all service
types except Unreliable Datagram (UD). 47

2.4 Conditionally required Communication Management messages, used
to acquire Unreliable Datagram (UD) addressing information. 47

2.5 Supported operations with various service types. Although Reliable
Datagram (RD) theoretically supports all operations, it is not sup-
ported by the OFEDTM stack. 52

4.1 InfiniBand node-type components from Figure 4.3 and the respective
sections of the present work that elaborate upon these components. . 93

5.1 Dell PowerEdge T630 test system for benchmarks. 103
5.2 The benchmark’s settings which were used to analyze the latency of

messages sent whilst both the sending and receiving node were waiting
for an event. 105

5.3 The benchmark’s settings which were used to analyze the latency of
messages sent whilst both the sending and receiving node were busy
polling. 108

5.4 The benchmark’s settings which were used to analyze the difference
in time between the moment that a Work Request (WR) is submitted
to the Send Queue (SQ) and the moment the corresponding message
is actually sent. 111

5.5 The benchmark’s settings which were used to analyze the influence
of sending messages inline on the latency. 113

5.6 The benchmark’s settings which were used to analayze the effect on
latency of sending messages through memory semantics instead of
channel semantics. 114

5.7 The benchmark’s settings which were used to analyze the influence
of Completion Queue Entry (CQE) creation on latency for send op-
erations. 116

5.8 The benchmark’s settings which were used to analyze the influence
of message size on the latency, with i ∈ [0, 12], j ∈ [0, 7], and k ∈ [0, 9].117

173

List of Tables

5.9 min tlat, t̃lat, and max tlat measured with ib_send_lat. All communi-
cation went over an RC RDMA CM QP and was sent with the normal
send operation. Every test contained 1000 iterations and messages
that were smaller than 188 B were sent inline. 120

5.10 t̃lat [µs] as reported by ib_send_lat for different service types and
message sizes with a varying MTU. All communication went over an
RDMA CM QP and was sent with the normal send operation. Every
test contained 1000 iterations and messages that were smaller than
188 B were sent inline. 122

5.11 t̃lat [µs] as reported by ib_send_lat for different service types and
queue pair types with a varying message size. All communication
was sent with the normal send operation. Every test contained 1000
iterations and messages that were smaller than 188 B were sent inline. 122

5.12 Comparison of the performance of timer functions. All tests were per-
formed with a rate of 100 kHz, with 10 64-bit floating-point numbers
per sample, RC as service type, and with the InfiniBand node-type
as node-type under test. Every test contains 250 000 samples. 123

A.1 IB verbs . 141
A.2 RDMA CM verbs . 147

C.1 Function pointers from the node_type C structure (Listing D.3),
which are used to register node-type functions with the super-node. . 153

F.1 The benchmark’s settings which were used to analyze the influence
of Completion Queue Entry (CQE) creation on latency for RDMA
write operations. 161

F.2 The benchmark’s settings which were used to analyze whether the
steep slope between 128 B and 256 B in Figure 5.8 was caused by the
non-constant burst sizes, with j ∈ [0, 7]. 162

F.3 The benchmark’s settings which were used to analyze whether the
increasing latency in Figure 5.8 was caused by congestion control,
with i ∈ [0, 12]. 163

F.4 The percentage of missed steps in the in and out files that were gener-
ated by the VILLASnode node-type benchmark for the nanomsg and
zeromq node-type. Although a considerable number of samples never
got transmitted, especially for high rates, no samples were dropped
after the first sequence number appeared in the out files. 167

174

List of Listings
2.1 The composition of struct ibv_sge. 50
2.2 The composition of struct ibv_recv_wr. 51
2.3 The composition of struct ibv_send_wr. 53
2.4 The composition of struct ibv_comp_channel. 54
2.5 Two C structures with an 1-bit character, a 4-bit integer, and a 2-bit

short. 59
2.6 Creating cpusets for system tasks and real-time tasks. 63
2.7 Moving all tasks, threads, and moveable kernel threads to system. . . 63
2.8 Execute <application> with the arguments <args> in the real-time

cpusets. 63
2.9 Bring up a CPU <cpuX> which was disabled during bootup. 64
2.10 Get the IRQ affinity of interrupt <irqX>. 64
2.11 Set the IRQ affinity of interrupt <irqX> to CPU 0–15. 65

3.1 Structure of the configuration file of a file node and an InfiniBand
node with a path connecting them. 70

3.2 Original parameters of read() and write() 71
3.3 Proposal for an additional parameter in read() and write(). 76
3.4 The six states a node could originally reside in. 78

4.1 The composition of struct timespec. 82
4.2 Pseudocode which records the moment a messages is submitted to

the Send Queue (SQ). 84
4.3 Pseudocode which records the moment a Completion Queue Entry

(CQE) becomes available in the Completion Queue (CQ). 84
4.4 Pseudocode which continues to update an instance of the timespec

C structure in a separate thread, whilst a pointer to this instance has
already been submitted to the Send Queue (SQ). 85

4.5 The events that are monitored by the communication management
thread. Although not explicitly stated in this listing, every case block
ends with a break. 89

4.6 Simplified version of the read-function of the signal node-type. 96
4.7 Implementation of task_wait() by waiting on timer expiration no-

tifications via a file descriptor. 97
4.8 The RDTSC instruction with fencing and the RDTSCP instruction,

written in inline assembler. Both functions must be placed inline and
thus be preceded by __attribute__((unused,always_inline)). . . 98

175

List of Listings

4.9 Implementation of task_wait() by busy polling the x86 Time-Stamp
Counter (TSC). 99

B.1 The tuned default profile latency-performance. Comments are omit-
ted for the sake of brevity. 151

D.1 The C structure of a VILLASnode sample. 155
D.2 The C structure of a VILLASnode node. 156
D.3 The C structure of a VILLASnode node-type. 157

E.1 The configuration that was used to examine the InfiniBand node-
type with the benchmark from Figure 4.4. The bash variables were
replaced by a script that controlled the benchmark. 159

176

Bibliography
[07] S.a. InfiniBandTM Architecture Specification, Volume 1. Release 1.2.1.

InfiniBand Trade Association et al. Nov. 2007.
[10] S.a. PCI Express® Base Specification. Revision 3.0. PCI-SIG. Nov. 2010.
[15] S.a. RDMA Aware Networks Programming User Manual. Rev 1.7. Mel-

lanox Technologies. May 2015.
[16] S.a. InfiniBandTM Architecture Specification Volume 2. Release 1.3.1.

InfiniBand Trade Association et al. Nov. 2016.
[17] S.a. Guidelines for Use of Extended Unique Identifier (EUI), Organiza-

tionally Unique Identifier (OUI), and Company ID (CID). Institute of
Electrical and Electronics Engineers. Aug. 2017.

[18a] S.a. IEEE Standard for Information Technology—Portable Operating
System Interface (POSIX®). Base Specifications, Issue 7. Institute of
Electrical and Electronics Engineers. Jan. 2018. isbn: 978-1-5044-4542-
9. doi: 10.1109/IEEESTD.2018.8277153.

[18b] S.a. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3A: System Programming Guide, Part 1. Intel. May 2018.

[18c] S.a. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3B: System Programming Guide, Part 2. Intel. May 2018.

[18d] S.a. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 2B: Instruction Set Reference, M-U. Intel. May 2018.

[18e] S.a. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 2A: Instruction Set Reference, A-L. Intel. May 2018.

[18f] S.a. Mellanox OFED for Linux User Manual. 2877. Rev 4.3. Mellanox
Technologies. Mar. 2018.

[18g] S.a. OFA Overview. OpenFabric Alliance, 2018. url: https://www.
openfabrics.org/ofa-overview/ (visited on 08/22/2018).

[97] S.a. Virtual Interface Architecture Specification. Version 1.0. Compaq,
Intel, Microsoft. Dec. 1997.

[Bow+09] Terrehon Bowden et al. The /proc Filesystem. Version 1.3. June 2009.
url: https://www.kernel.org/doc/Documentation/filesystems/
proc.txt (visited on 09/19/2018).

177

https://doi.org/10.1109/IEEESTD.2018.8277153
https://www.openfabrics.org/ofa-overview/
https://www.openfabrics.org/ofa-overview/
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Bibliography

[BY96] Michael Barabanov and Victor Yodaiken. “Real-Time Linux”. In: Linux
journal 23.4.2 (1996), p. 1.

[CDZ05] Diego Crupnicoff, Sujal Das, and Eitan Zahavi. Deploying Quality of
Service and Congestion Control in InfiniBand-based Data Center Net-
works. Tech. rep. 2379. 2005.

[Der+04] Simon Derr et al. Cpusets. 2004. url: https://www.kernel.org/doc/
Documentation/cgroup-v1/cpusets.txt (visited on 09/16/2018).

[Dre07] Ulrich Drepper. What Every Programmer Should Know About Memory.
Version 1.0. Red Hat, Inc., Nov. 2007.

[Dun+98] Dave Dunning et al. “The Virtual Interface Architecture”. In: IEEE
micro 18.2 (Mar. 1998), pp. 66–76. issn: 0272-1732. doi: 10.1109/40.
671404.

[Far+15] MD Omar Faruque et al. “Real-Time Simulation Technologies for Power
Systems Design, Testing, and Analysis”. In: IEEE Power and Energy
Technology Systems Journal 2.2 (June 2015), pp. 63–73. issn: 2332-
7707. doi: 10.1109/JPETS.2015.2427370.

[Gan+16] Jayneel Gandhi et al. “Range Translations for Fast Virtual Memory.”
In: IEEE Micro 36.3 (May 2016), pp. 118–126. issn: 0272-1732. doi:
10.1109/MM.2016.10.

[Kas15] Kashyap, V. IP over InfiniBand (IPoIB) Architecture. Internet Engi-
neering Task Force. May 2015.

[Ker10] Michael Kerrisk. The Linux Programming Interface: a Linux and UNIX
System Programming Handbook. No Starch Press, 2010. isbn: 978-1-
59327-220-3.

[Koz05] Charles M Kozierok. The TCP/IP-Guide: A Comprehensive, Illustrated
Internet Protocols Reference. No Starch Press, 2005. isbn: 978-1593270476.

[KR78] Brian W Kernighan and Dennis M Ritchie. The C Programming Lan-
guage. 1st ed. Feb. 1978. isbn: 0-13-110163-3.

[Kro03] Greg Kroah-Hartman. “udev–A Userspace Implementation of devfs”. In:
Proceedings of the Linux symposium. July 2003, pp. 263–271.

[L+83] Susan L. et al. “gprof: A Call Graph Execution Profiler”. In: Proceed-
ings: USENIX Association [and] Software Tools Users Group Summer
Conference. Toronto, Ontario, Canada, 1983, pp. 81–88.

[Lam13] Christoph Lameter. “NUMA (Non-Uniform Memory Access): An Overview”.
In: Queue 11.7 (July 2013), pp. 40–51. issn: 1542-7730. doi: 10.1145/
2508834.2513149.

[Lar+09] Steen Larsen et al. “Architectural breakdown of end-to-end latency in
a TCP/IP network”. In: International Journal of Parallel Programming
37.6 (Dec. 2009), pp. 556–571. issn: 1573-7640. doi: 10.1007/s10766-
009-0109-6.

178

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://doi.org/10.1109/40.671404
https://doi.org/10.1109/40.671404
https://doi.org/10.1109/JPETS.2015.2427370
https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1007/s10766-009-0109-6
https://doi.org/10.1007/s10766-009-0109-6

Bibliography

[Lov10] Robert Love. Linux Kernel Development. Pearson Education, Inc., June
2010. isbn: 978-0-672-32946-3.

[LR14] Qian Liu and Robert D. Russell. “A Performance Study of InfiniBand
Fourteen Data Rate (FDR)”. In: Proceedings of the High Performance
Computing Symposium. HPC ’14. Tampa, Florida: Society for Computer
Simulation International, 2014, pp. 1–10.

[Mir+18] Markus Mirz et al. “Distributed Real-Time Co-Simulation as a Service”.
In: Industrial Electronics for Sustainable Energy Systems (IESES), 2018
IEEE International Conference on. Hamilton, New Zealand: IEEE, Feb.
2018, pp. 534–539. doi: 10.1109/IESES.2018.8349934.

[MJL08] Paul Menage, Paul Jackson, and Christoph Lameter. Cgroups. 2008.
url: https://www.kernel.org/doc/Documentation/cgroup-v1/
cgroups.txt (visited on 09/16/2018).

[MR12] Patrick MacArthur and Robert D Russell. “A Performance Study to
Guide RDMA Programming Decisions”. In: High Performance Com-
puting and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th
International Conference on. IEEE, 2012, pp. 778–785. doi: 10.1109/
HPCC.2012.110.

[Pao10] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel®
IA-32 and IA-64 Instruction Set Architectures. Tech. rep. Sept. 2010.

[Pfi01] Gregory F Pfister. “An Introduction to the InfinibandTM Architecture”.
In: High Performance Mass Storage and Parallel I/O 42 (2001), pp. 617–
632.

[PG07] Fernando Pérez and Brian E. Granger. “IPython: a System for Interac-
tive Scientific Computing”. In: Computing in Science and Engineering
9.3 (May 2007), pp. 21–29. issn: 1521-9615. doi: 10.1109/MCSE.2007.
53. url: https://ipython.org.

[Rei+06] S. Reinemo et al. “An Overview of QoS Capabilities in InfiniBand,
Advanced Switching Interconnect, and Ethernet”. In: IEEE Commu-
nications Magazine 44.7 (Sept. 2006), pp. 32–38. issn: 0163-6804. doi:
10.1109/MCOM.2006.1668378.

[RH07] Steven Rostedt and Darren V Hart. “Internals of the RT Patch”. In:
Proceedings of the Linux symposium. Vol. 2. June 2007, pp. 161–172.

[Ste+17] Marija Stevic et al. “Multi-site European framework for real-time co-
simulation of power systems”. In: IET Generation, Transmission & Dis-
tribution 11.17 (2017), pp. 4126–4135. issn: 1751-8687. doi: 10.1049/
iet-gtd.2016.1576.

179

https://doi.org/10.1109/IESES.2018.8349934
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://doi.org/10.1109/HPCC.2012.110
https://doi.org/10.1109/HPCC.2012.110
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://ipython.org
https://doi.org/10.1109/MCOM.2006.1668378
https://doi.org/10.1049/iet-gtd.2016.1576
https://doi.org/10.1049/iet-gtd.2016.1576

Bibliography

[Str+15] Thomas Strasser et al. “A Review of Architectures and Concepts for
Intelligence in Future Electric Energy Systems”. In: IEEE Transactions
on Industrial Electronics 62.4 (Apr. 2015), pp. 2424–2438. issn: 0278-
0046. doi: 10.1109/TIE.2014.2361486.

[TB14] Andrew S Tanenbaum and Herbert Bos. Modern Operating System.
4th ed. Pearson Education, Inc, 2014. isbn: 978-0-13-359162-0.

[Vog+17] Steffen Vogel et al. “An Open Solution for Next-generation Real-time
Power System Simulation”. In: Energy Internet and Energy System In-
tegration (EI2), 2017 IEEE Conference on. IEEE, Nov. 2017, pp. 1–6.
doi: 10.1109/EI2.2017.8245739.

[Vog16] Steffen Vogel. “Development of a modular and fully-digital PCIe-based
interface to Real-Time Digital Simulator”. MA thesis. Institute for Au-
tomation of Complex Power Systems, Aug. 2016.

180

https://doi.org/10.1109/TIE.2014.2361486
https://doi.org/10.1109/EI2.2017.8245739

	Title Page
	Abstract
	Table of Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 New challenges in power system simulations
	1.1.2 VILLASframework: distributed real-time co-simulations
	1.1.3 Hard real-time communication between different hosts

	1.2 Related work
	1.3 Structure of the present work

	2 Basics
	2.1 The Virtual Interface Architecture
	2.1.1 Basic components
	2.1.2 Data transfer
	2.1.3 The virtual interface finite-state machine

	2.2 The InfiniBand Architecture
	2.2.1 Basics of the InfiniBand Architecture
	2.2.2 Queue pairs & completion queues
	2.2.3 The InfiniBand Architecture subnet
	2.2.4 Data packet format & addressing
	2.2.5 Virtual lanes & service levels
	2.2.6 Congestion control
	2.2.7 Memory management
	2.2.8 Communication management

	2.3 OpenFabrics software libraries
	2.3.1 Submitting work requests to queues
	2.3.2 Event channels
	2.3.3 RDMA communication manager library

	2.4 Real-time optimizations in Linux
	2.4.1 Memory optimizations
	2.4.2 Non-uniform memory access
	2.4.3 CPU isolation & affinity
	2.4.4 Interrupt affinity
	2.4.5 Tuned daemon

	3 Architecture
	3.1 Concept
	3.2 Configuration of nodes
	3.3 Interface of node-types
	3.3.1 Original implementation of the read- and write-function
	3.3.2 Requirements for the read- and write-function of an InfiniBand node
	3.3.3 Proposal for a new read- and write-function

	3.4 Memory management
	3.5 VILLASnode finite-state machine

	4 Implementation
	4.1 Host channel adapter benchmark
	4.1.1 Definition of measurement points
	4.1.2 Supported tests

	4.2 VILLASframework InfiniBand node-type
	4.2.1 Start-function
	4.2.2 Communication management thread
	4.2.3 Read-function
	4.2.4 Write-function
	4.2.5 Overview of the InfiniBand node-type

	4.3 VILLASnode node-type benchmark
	4.3.1 Signal generation rate
	4.3.2 Further optimizations of the benchmark's datapath

	4.4 Enabling UC support in the RDMA CM
	4.5 Processing data
	4.5.1 Processing the host channel adapter benchmark's results
	4.5.2 Processing the VILLASnode node-type benchmark's results

	5 Evaluation
	5.1 Custom one-way host channel adapter benchmark
	5.1.1 Event based polling
	5.1.2 Busy polling
	5.1.3 Differences between the submit and send timestamp
	5.1.4 Inline messages
	5.1.5 RDMA write compared to the send operation
	5.1.6 Unsignaled messages compared to signaled messages
	5.1.7 Variation of message size

	5.2 OFED's round-trip host channel adapter benchmark
	5.2.1 Correspondence between round-trip and one-way benchmark
	5.2.2 Variation of the MTU
	5.2.3 RDMA CM queue pairs compared to regular queue pairs

	5.3 VILLASnode node-type benchmark
	5.3.1 Comparison between InfiniBand service types
	5.3.2 Comparison to the zero-latency reference
	5.3.3 Comparison to other node-types

	6 Conclusion
	7 Future Work
	7.1 Real-time optimizations
	7.2 Optimization & profiling
	7.3 RDMA over Converged Ethernet support

	Appendices
	A OpenFabrics Verbs
	A.1 IB verbs API
	ibv_ack_async_event
	ibv_ack_cq_events
	ibv_alloc_pd
	ibv_attach_mcast
	ibv_close_device
	ibv_close_xrc_domain
	ibv_create_ah
	ibv_create_ah_from_wc
	ibv_create_comp_channel
	ibv_create_cq
	ibv_create_qp
	ibv_create_srq
	ibv_create_xrc_rcv_qp
	ibv_create_xrc_srq
	ibv_dealloc_pd
	ibv_dereg_mr
	ibv_destroy_ah
	ibv_destroy_comp_channel
	ibv_destroy_cq
	ibv_destroy_qp
	ibv_destroy_srq
	ibv_detach_mcast
	ibv_event_type_str
	ibv_fork_init
	ibv_free_device_list
	ibv_get_async_event
	ibv_get_cq_event
	ibv_get_device_guid
	ibv_get_device_list
	ibv_get_device_name
	ibv_init_ah_from_wc
	ibv_modify_qp
	ibv_modify_srq
	ibv_modify_xrc_rcv_qp
	ibv_node_type_str
	ibv_open_device
	ibv_open_xrc_domain
	ibv_poll_cq
	ibv_port_state_str
	ibv_post_recv
	ibv_post_send
	ibv_post_srq_recv
	ibv_query_device
	ibv_query_gid
	ibv_query_pkey
	ibv_query_port
	ibv_query_qp
	ibv_query_srq
	ibv_query_xrc_rcv_qp
	ibv_reg_mr
	ibv_reg_xrc_rcv_qp
	ibv_req_notify_cq
	ibv_resize_cq
	ibv_unreg_xrc_rcv_qp

	A.2 RDMA CM API
	rdma_accept
	rdma_ack_cm_event
	rdma_bind_addr
	rdma_connect
	rdma_create_ep
	rdma_create_event_channel
	rdma_create_id
	rdma_create_qp
	rdma_destroy_ep
	rdma_destroy_event_channel
	rdma_destroy_id
	rdma_destroy_qp
	rdma_disconnect
	rdma_event_str
	rdma_free_devices
	rdma_freeaddrinfo
	rdma_get_cm_event
	rdma_get_devices
	rdma_get_dst_port
	rdma_get_local_addr
	rdma_get_peer_addr
	rdma_get_request
	rdma_get_src_port
	rdma_getaddrinfo
	rdma_join_multicast
	rdma_leave_multicast
	rdma_listen
	rdma_migrade_id
	rdma_notify
	rdma_reject
	rdma_resolve_addr
	rdma_resolve_route
	rdma_set_option

	B Tuned daemon profile
	C VILLASnode node-type interface
	check
	destroy
	fd
	parse
	print
	read
	reverse
	start node
	start node-type
	stop node
	stop node-type
	write

	D VILLASnode structs
	D.1 struct sample
	D.2 struct node
	D.3 struct node_type

	E InfiniBand node configuration
	F Results benchmarks
	F.1 Influence of CQEs on latency of RDMA write
	F.2 Influence of constant burst size on latency
	F.3 Influence of intermediate pauses on latency
	F.4 Comparison of timer functions
	F.5 3D plots InfiniBand nodes (UC & UD)
	F.6 3D plot shmem node
	F.7 Missed steps nanomsg and zeromq nodes

	List of Figures
	List of Tables
	List of Listings
	Bibliography

